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Foreword 

This book offers a scholarly presentation of the premises and applications of the mathematics of 

the proprietary software of Jantz Analytics, LLP. The Jantz models focus on publicly traded stocks 

of real estate investment trusts (REITs). Specifically, the models provide highly advanced 

analytics for REIT portfolio optimization. The Jantz models provide the following toolset: 

• Portfolio optimization strategies incorporating tail-risk assessment, day-ahead return 

forecasting, turnover and performance attribute constraints, benchmark tracking and investor 

view input; 

• Backtesting; 

• A spectrum of risk-assessment tools augmenting traditional risk measures with early warning 

systems and risk budgeting; 

• Option valuation; and 

• Inclusion of environmental, social and governance ratings in portfolio optimization and option 

pricing. 

These tools are employed within a unified framework consistent with dynamic asset 

pricing (rational finance). The Jantz software is unique among existing portfolio-optimization 

platforms. Many such platforms are based on historical performance, but the Jantz software is 

predictive. All Jantz forecasting and risk models are consistent with the regulatory requirements 

in Basel II and Basel III.  In short, we believe the Jantz software reflects the “state of the science” 

in portfolio optimization, risk analysis and option valuation.  

The expertise of the Jantz team is multidimensional. It represents a unique combination of 

business knowledge, real estate experience, and world-class mathematical and statistical 

credentials. The cofounders of Jantz have over 80 years of combined valuation and consulting 

experience in real estate throughout the United States and Puerto Rico. This experience includes 

virtually all property types. Their clients have included commercial banks, pension funds, various 

public-sector entities, and investment banks. 

Dr. Svetlozar (Zari) Rachev is one of the world’s foremost authorities on the application of 

heavy-tailed distributions in finance. He is a cofounder and formerly the president of Bravo Risk 

Management Group, which originated the Cognity methodology. Bravo was acquired by 

FinAnalytica, where Zari served as chief scientist. Dr. W. Brent Lindquist is a computational 

mathematician with 40 years of experience in developing numerical methods. He is a cofounder 

of the company that marketed the Frontier package used in oil reservoir simulation and has 

commercially licensed his 3DMA-Rock code for studying flow at pore scales. Dr. Abootaleb 

Shirvani is an expert in Lévy subordinated processes applied to finance. Dr. Yuan Hu’s expertise 

is in option pricing in complete markets with non-Gaussian returns. 

We anticipate that the readership of this book will be not only mathematical and statistical 

experts but also management-level professionals without deep knowledge of the mathematics 

presented. To assist in the latter’s comprehension, a summary of content in nonmathematical terms 

is presented as an abstract preceding each chapter.  

Stephen T. Crosson, MAI, SRA                         Jimmy H. Jackson, MAI 

Cofounders, Jantz Analytics, LLC 
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Abbreviations 

 

This list of abbreviations does not include asset and benchmark abbreviations. All such 

abbreviations are defined in Chapter 2 and are assigned by the trading exchange. 

 

AA  Asset allocation effect 

ADR  American depository receipts 

AIC  Akaike information criterion 

ARMA autoregressive moving-average 

BIC  Bayesian information criterion 

BL  Black−Litterman model 

CAPM  capital asset pricing model 

CC  Christoffersen’s conditional coverage test 

CCI  Christoffersen’s conditional coverage independence test (Chapter 8) 

CDF  cumulative distribution function 

CF  characteristic function 

ciStd  component standard deviation 

ciVaR  component value-at-risk 

CML  capital market line 

CVaR  conditional value-at-risk 

D  dynamic optimization 

EQW  equal-weighted portfolio 

ESG  environment, sustainability and governance 

ETF  exchange-traded fund 

FFT  fast Fourier transform 

GARCH generalized autoregressive conditional heteroscedasticity 

H  historical optimization 

 I  interaction term (Chapter 11) 

IG  inverse Gaussian distribution 

IQR  inter-quartile range 

IVaR  incremental value at risk 

M95  minimum CVaR95 portfolio 

M99  minimum CVaR99 portfolio 

MDD  maximum drawdown 

MPT  modern portfolio theory 

MStd  marginal standard deviation 

MTLR  modified tail-loss ratio 

MTLS  modified tail-loss spread 

MVaR  marginal value-at-risk 

MVP  Markowitz minimum mean-variance portfolio 

NDIG  normal double inverse Gaussian 

PDF  probability density function 

PoF  Kupiec’s proportion of failures test 



 

 

 

 

R  REITs-only portfolio 

RR  Rachev ratio 

R+S  REITs + stock portfolio 

REIT  real estate investment trust 

S&P  Standard and Poors 

SE  selection effect 

SR  Sharpe ratio 

SS  Sortino−Satchell ratio 

Std  standard deviation 

T95  tangent CVaR95 portfolio 

T99  tangent CVaR99 portfolio 

TBF  Haas’s time between failures test 

TBFI  Haas’s time between failures independence test 

TL  traffic light test (Basel accord) 

TLR  tail-loss ratio 

TLS  tail-loss spread 

TO  turnover 

TVP  Markowitz tangent mean-variance portfolio 

TUFF  Kupiec’s time until first failure test 

VaR  value-at-risk 
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Chapter 1 
The Real Estate Investment Market: The Current State and Why Advances Are Needed 

 

To prepare for the most challenging investment periods, an investment approach must comprise 

two critical components: (1) diversified portfolios managed under strategies that maximize return 

while minimizing risk (based on one or more chosen measures), supplemented with additional 

risk-assessment and risk-management tools, and (2) the purchase of derivatives (e.g., options) that 

provide insurance against “foreseeably expected” adverse conditions. The central goal of this book 

is to elucidate such an investment approach, developed in the context of model portfolios of REIT-

based assets. 

Risk is the greatest factor in investing. Modern investment theories (such as modern portfolio 

theory) and strategies provide techniques for imposing some degree of “control” over the risk–

return spectrum. However, it is the appearance of outlier events (tail events, in the language of 

probability) that occasion the greatest investment stress and can even lead to deep changes in 

financial and social systems. For example, the trigger events of the Great Recession of 2008–2009 

– the bursting of the U.S. housing bubble in 2005–2006 and the resulting subprime mortgage crisis 

in 2007–2008 – revealed significant vulnerabilities in the financial system and led to the collapse 

or bailout of major investment banks. The recession produced a serious disruption of normal 

international relations. Unlike the Great Recession, and perhaps more akin to the disruptive force 

of internet technology, the COVID-19 pandemic has severely tested the assumptions on which 

many real estate models are based. In many ways, the experiences of the real estate market over 

the course of the pandemic, ranging from shock and denial to reconstruction, resemble stages of 

human grieving. There are strong indications that the pandemic has accelerated, and perhaps made 

irreversible, developments that were already underway in online shopping, online streaming of 

entertainment content, online ordering of food, remote work, and online business meetings – all of 

which have repercussions for existing business and residential real estate models. Consider the 

following news articles, released during January, February, and May 2021 as the world began to 

emerge from the pandemic. We offer a brief commentary on each article. 

 

2020 Was the Manhattan Office Market's Worst Year This Century (Bisnow, 1/7/20211) “The 

last quarter of 2020 capped a disruptive year for the world's largest office market as asking rents 

fell, availability increased and leasing activity dropped. Manhattan saw its slowest year for leasing 

since the start of the 21st century.” 

This article deals with the contraction in demand for office space in Manhattan – a development 

that has affected office-space demand in major markets throughout the United States. Further, the 

pandemic’s abatement is unlikely to result in pre-COVID demand. Both employers and employees 

are realizing the benefits of working from home, at least part-time. The magnitude and potential 

duration of this phenomenon are currently unknowable. Investors will compensate by requiring 

greater returns and heightened scrutiny of tenants’ creditworthiness and in-office needs. (S.T.C. 

6/8/2021) 

 
1 https://www.bisnow.com/new-york/news/office/overall-manhattan-office-leasing-volume-hit-its-lowest-point-this-

century-in-2020-107283?utm_source=push. 

https://www.bisnow.com/new-york/news/office/overall-manhattan-office-leasing-volume-hit-its-lowest-point-this-century-in-2020-107283?utm_source=push
https://www.bisnow.com/new-york/news/office/overall-manhattan-office-leasing-volume-hit-its-lowest-point-this-century-in-2020-107283?utm_source=push
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City Apartment REITs Await the Return to the Office (The Wall Street Journal, 1/5/20212). 

“Covid-19 hurt Equity Residential and UDR shares last year, with rents falling as some urban 

employees moved to rural and suburban areas.” 

The risk inherent in urban-apartment investments has not been adequately analyzed. Several 

factors are clearly in need of consideration, including employees’ preference for working from 

home, employers’ desire to reduce office-rent expenses by permitting working from home, and the 

desire of some employees to relocate to areas with lower tax rates, lower housing costs, less 

regulation, and less civil disorder, among other considerations. (S.T.C. 2/28/2021) 

 

The Metrics You Should Be Watching in 2021 (GlobeSt.com, 1/12/20213). “Job cuts and the 

Texas ratio will matter.” 

This article points out some important metrics for property demand. However, sophisticated 

analytics involve a far deeper dive into value-influencing factors for real estate. (S.T.C. 2/28/2021) 

 

Covid-19 Forces Co-Working Firms to Recast Their Business Model (The Wall Street Journal, 

2/9/20214). “Pandemic is accelerating the end of the industry’s lease-and-sublet model, some 

suggest.” 

This article reflects the reality of risk in the office sector as well as firms’ creativity is adapting 

to diminished demand. The new coworking paradigm requires ownership to share in master 

lessees’ risk of demand contraction. (S.T.C. 2/28/2021) 

 

Zillow Stock Soars to New Highs as Residential Real Estate Moves Online (Barron’s, 

2/11/20215). “Zillow Group shares have touched a new all-time high after the online real estate 

services company posted better-than-expected fourth-quarter results, as the pandemic accelerates 

consumer adoption of virtual home sales.” 

The Zillow model, made possible by the use of internet technology, illustrates the consolidation 

of elements of the single-family residential segment. Similar models will surely follow soon. 

(S.T.C. 2/28/2021) 

 

The Close: Stocks Rise as Yellen Backs More Stimulus, BlackBerry Continues to Surge (The 

Globe and Mail, 1/19/20216). “Wall Street’s main indexes rose on Tuesday as U.S. Treasury 

Secretary nominee Janet Yellen advocated for a hefty fiscal relief package before lawmakers to 

help the world’s largest economy ride out a pandemic-driven slump.” 

 
2 https://www.wsj.com/articles/city-apartment-reits-await-the-return-to-the-office-11609851601?st=6ckq1zhh1479m 

n7&reflink=article_gmail_share. 
3 https://www.globest.com/2021/01/12/the-metrics-you-should-be-watching-in-2021/?slreturn=20210128174522. 
4 https://www.wsj.com/articles/covid-19-forces-co-working-firms-to-recast-their-business-model-11612875600. 
5 https://www.barrons.com/articles/zillow-stock-soars-to-new-highs-as-residential-real-estate-moves-online-516130 

65333?st=17x6d4eako3tw0t. 
6 https://www.theglobeandmail.com/investing/markets/inside-the-market/market-news/article-premarket-world-  

shares-climb-ahead-of-yellen-speech-earnings-in-focus/. 

https://www.wsj.com/articles/city-apartment-reits-await-the-return-to-the-office-11609851601?st=6ckq1zhh1479m%20n7&reflink=article_gmail_share
https://www.wsj.com/articles/city-apartment-reits-await-the-return-to-the-office-11609851601?st=6ckq1zhh1479m%20n7&reflink=article_gmail_share
https://www.wsj.com/articles/city-apartment-reits-await-the-return-to-the-office-11609851601?st=6ckq1zhh1479m%20n7&reflink=article_gmail_share
https://www.globest.com/2021/01/12/the-metrics-you-should-be-watching-in-2021/?slreturn=20210128174522
https://www.wsj.com/articles/covid-19-forces-co-working-firms-to-recast-their-business-model-11612875600
https://www.barrons.com/articles/zillow-stock-soars-to-new-highs-as-residential-real-estate-moves-online-516130%2065333?st=17x6d4eako3tw0t
https://www.barrons.com/articles/zillow-stock-soars-to-new-highs-as-residential-real-estate-moves-online-516130%2065333?st=17x6d4eako3tw0t
https://www.theglobeandmail.com/investing/markets/inside-the-market/market-news/article-premarket-world-%20%20shares-climb-ahead-of-yellen-speech-earnings-in-focus/
https://www.theglobeandmail.com/investing/markets/inside-the-market/market-news/article-premarket-world-%20%20shares-climb-ahead-of-yellen-speech-earnings-in-focus/


1. Recent Developments 

 

3 

 

The additional federal stimulus will likely result in countervailing impacts on commercial real 

estate. There is a widespread belief that higher inflation is probable in the near-intermediate term. 

In general, inflation has a positive impact on commercial real estate pricing. However, the 

pandemic has exerted a profound influence on demand for the major commercial property types, 

excluding the warehouse sector. The timing of a return to prepandemic demand remains unclear. 

Indeed, some industry observers believe the work-from-home phenomenon has reduced office 

demand for the foreseeable future. Lastly, most commercial lenders have exercised forbearance in 

dealing with nonperforming loans. The resulting uncertainty increases the risk inherent in this asset 

class. (S.T.C. 1/21/2021) 

 

Becoming a Landlord Looks Good on Paper. In Reality, It’s Much Harder. What to Consider 

before Turning Your Old Home into a Rental Property (The Wall Street Journal, 1/21/20217). 

The illustration this article presents, in which a homeowner in California could receive rental 

payments of $6,000 per month on their $1.6-million residence, reflects a nominal 4.50% return on 

investment (ROI). This return would be reduced by other expenses, such as taxes, insurance, and 

overall major maintenance. The only certainty or guaranteed allurement of this kind of investment 

would be the property depreciation that could be charged on the rental property. However, the 

recapture of the depreciation at the end of the investment creates a bit of a tax surprise or burden. 

For the first time in many decades, the long-standing continued home-appreciation expectation in 

California has become uncertain. If appreciation rates go flat, as some experts have predicted, the 

California homeowner’s ROI after all expenses might be 1%–2%, or even lower. This nominal 

rate of return does not appear to be worth the risk relative to the downside of owning the $1.6-

million residence. Another real source of potential risk is rent control, which limits the magnitude 

of annual increases in rent. Due to these cumulative risk factors, it appears to be advisable to 

convert this large amount of equity to a higher-yielding class of real estate, such as a proper lower-

risk allocation of REIT shares in which the investment pays a healthy dividend, has appreciation 

possibilities spread across many assets, and is much more passive for the investor. (J.H.J. and 

S.T.C. 1/22/2021) 

 

How Top Real Estate Fund Managers Are Preparing for a Post-Covid World (Barron’s, 

2/22/20218). “‘We think three to five years from now 20% of the workforce is gone on a daily 

basis from the existing standing inventory of office space,’ says Burl East, manager of 

Altegris/AACA Opportunistic Real Estate.” 

The pandemic has greatly increased risk in the office, retail, and hospitality sectors of 

commercial real estate. The benefactors of shifting investor demand are warehouse/distribution 

centers as well as properties that house technology-based businesses. The emergence of “prop 

tech” firms (tech firms focused on property) is also a recent example of investors’ expanding 

appetites for both real estate and superior analytics. Prop tech firms are proving to be highly-

sought-after targets for special purpose acquisition companies. (S.T.C. 2/28/2021) 

 

 
7 https://www.wsj.com/articles/should-i-become-a-landlord-11611237640. 
8 https://www.barrons.com/articles/how-top-real-estate-fund-managers-are-preparing-for-a-post-covid-world-51613 

993400. 

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.wsj.com%2Farticles%2Fshould-i-become-a-landlord-11611237640&data=04%7C01%7Cjhjackson%40irr.com%7Cc2ae9112def84eebdb7d08d8befa7b90%7C17fc4d373e8d4250a2a6c25f85089bd6%7C0%7C0%7C637469330330104358%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=tyz1TmHdnz4Z01UBJSTTCw5wW%2F9KyLNlGmkIPtJ%2FhIo%3D&reserved=0
https://www.barrons.com/articles/how-top-real-estate-fund-managers-are-preparing-for-a-post-covid-world-51613%20993400
https://www.barrons.com/articles/how-top-real-estate-fund-managers-are-preparing-for-a-post-covid-world-51613%20993400
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Hotel Sellers Use Car-Sales Model to Finance Lodging Deals (The Wall Street Journal, 

2/23/20219). “Banks, owners offer cheap rates and sometimes require little money down to unload 

unprofitable hotels.” 

This article compares current seller financing to that of the savings and loan crisis of the late 

1980s and early 90s. However, they have significant differences. The current situation has resulted 

from a sharp contraction in demand caused by the pandemic, but the savings and loan crisis was 

caused by a vast oversupply of commercial real estate. Moreover, the former is likely to be resolved 

in relatively short order, whereas it took years to restore equilibrium after the latter. (S.T.C. 

2/28/2021) 

 

The DOJ Says It Will Appeal after a Trump-Appointed Judge Struck Down a Federal 

Eviction Moratorium (Business Insider, 2/28/202110). 

The nationwide eviction moratorium from the Centers for Disease Control and Prevention has 

been ruled unconstitutional and is on appeal to the U.S. Fifth Circuit of Appeals. If this ruling is 

sustained on appeal, it will almost certainly lead to litigation against the federal government for 

lost rents caused by the moratorium. (S.T.C. 2/28/2021) 

 

Homebuyers Are Getting Slammed by Record-High Prices. Here's When Economists Say 

They'll Finally Ease Up (Business Insider, 5/13/202111). “Limited inventory and low mortgage 

rates have sparked rising homebuyer demand, which has resulted in astronomical home-price 

growth over the past year.” 

This article does not address the critical factor of affordability. Without concomitant growth 

in potential buyers’ income, home-price increases must abate. Homebuilders will be squeezed by 

continuing increases in material costs, on the one hand, and diminishing buyer affordability, on 

the other. (S.T.C. 5/19/2021) 

During the COVID-19 pandemic, lingering forbearance risks have contributed to more 

stringent underwriting criteria. Even after the reopening of the economy, underwriting standards 

have not softened for the mortgage-applicant sector. These stringent lending standards will 

eventually slow or stall sale transactions for this large sector of buyers who utilize mortgage loans. 

(J.H.J. 5/19/2021) 

 

Investors Bet on Commercial Real Estate, Undeterred by Empty Offices and Hotel Rooms 

(The Wall Street Journal, 5/18/202112). “Government support and help from banks kept landlords 

from suffering steep losses.” 

Over the next several years, the commercial real estate market will most definitely see the 

repositioning of now-suffering property classes (hotels, malls, and office properties) as other 

property classes due to the lack of market/consumer demand. For instance, the following property-

classification shifts are likely to occur simultaneously in the short term: 

 
9 https://www.wsj.com/articles/hotel-sellers-use-car-sales-model-to-finance-lodging-deals-11614076202. 
10 https://www.businessinsider.com/doj-attorneys-to-appeal-cdc-eviction-moratorium-ruling-2021-2. 
11 https://www.businessinsider.com/when-will-home-prices-drop-increase-predictions-forecast-2021-5. 
12 https://www.wsj.com/articles/investors-bet-on-commercial-real-estate-undeterred-by-empty-offices-and-hotel- 

rooms-11621330204?st=9qguj7qtf2f8qv4&reflink=article_gmail_share. 

https://www.wsj.com/articles/hotel-sellers-use-car-sales-model-to-finance-lodging-deals-11614076202
https://www.businessinsider.com/doj-attorneys-to-appeal-cdc-eviction-moratorium-ruling-2021-2
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.businessinsider.com%2Fwhen-will-home-prices-drop-increase-predictions-forecast-2021-5&data=04%7C01%7Cscrosson%40irr.com%7Cb35cb40557194353bc4308d91ad4fa4e%7C17fc4d373e8d4250a2a6c25f85089bd6%7C0%7C0%7C637570324351903879%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=6kp%2FpeQ1AnOdggFmdoZkfs0%2FlbZhYQnjiXa2SYHMyL0%3D&reserved=0
https://www.wsj.com/articles/investors-bet-on-commercial-real-estate-undeterred-by-empty-offices-and-hotel-%20rooms-11621330204?st=9qguj7qtf2f8qv4&reflink=article_gmail_share
https://www.wsj.com/articles/investors-bet-on-commercial-real-estate-undeterred-by-empty-offices-and-hotel-%20rooms-11621330204?st=9qguj7qtf2f8qv4&reflink=article_gmail_share
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• hotels to condo/multifamily residential uses 

• office properties to multifamily residential properties 

• large-scale regional malls to Google-type last-mile consumer fulfillment centers, etc. 

It appears that this musical-chairs-style repositioning/redevelopment is already priced into the 

sentiment of the commercial real estate market as well as into the institutional lender community. 

(J.H.J. 5/25/2021) 

 

Blackstone REIT Plans to Name Katie Keenan as CEO (The Wall Street Journal, 5/19/202113). 

“Blackstone Mortgage Trust Inc., a large commercial real-estate lender, is expected to appoint 

Katie Keenan as chief executive Wednesday, partly crediting the role she played in helping 

navigate the company through one of the most challenging markets in decades.” 

The declines in REIT shares early in the pandemic were predictable and rational, given the 

many unknowns in play. Chief among them was the extent and timing of postvirus demand, 

particularly for office property. Blackstone’s recovery clearly resulted in part from the durability 

of demand from many of its biotech and entertainment-based tenants. This reflects the obvious 

premise that commercial real estate is highly differentiated; for example, not all office buildings 

have the same risk characteristics. (S.T.C. 5/23/2021) 

 

House Prices Are Soaring. Rents Are Flat. What Does It Mean for Inflation? (Barron’s, 

5/20/202114). “House prices are rising at their fastest rate on record—and the pace of increases is 

accelerating. Monthly data from Zillow and from the S&P CoreLogic Case-Shiller Index both 

indicate that the current surge in U.S. home prices is unlike anything seen before, including the 

bubble of the 2000s.” 

I vividly remember the housing bubble created by the subprime mortgage crisis of 2008. For 

several years afterwards, homebuilders could not move or sell their inventory of newly constructed 

homes in the Dallas–Fort Worth metroplex, one of the most active homebuilding markets in the 

entire United States. Many homebuilders resorted to the lease market to attempt to ride out the 

housing downturn and, basically, survive the corrective disruption. The concept of large-scale 

single-family rental communities emerged from this corrective disruption. This real estate concept 

resulted not from rental demand but from public and non-publicly-traded homebuilders’ need to 

ride out the storm. The central factor of sustaining single-family rental demand in 2021 is 

unemployment. A tenant simply cannot pay rent without a job. When economic stimulus payments 

end at some point in the future, and if unemployment is still excessively high, the reality of this 

situation will set in, and the single-family rental bubble will likely burst. (J.H.J. 1/8/2021) 

More variables are impacting home prices than ever before and traditional metrics for the 

relative state of pricing are inadequate. For instance, the large institutional appetite for buying 

single-family homes in order to rent them is a recent phenomenon. This appears to be the 

equivalent to momentum investing in equities. (S.T.C. 5/23/2021) 

This article provides relevant perspectives on the interplay between home prices and rental 

rates. However, the analysis of returns is simplistic. It is highly likely that repairs, maintenance, 

 
13 https://www.wsj.com/articles/blackstone-reit-plans-to-appoint-katie-keenan-as-ceo-11621424701?st=iaz6zfqdhj07 

wny&reflink=article_gmail_share. 
14 https://www.barrons.com/articles/house-prices-are-soaring-rents-are-flat-what-does-it-mean-for-inflation-516215 

25998?st=8ih1bt5c6uwis7h. 

https://www.wsj.com/articles/blackstone-reit-plans-to-appoint-katie-keenan-as-ceo-11621424701?st=iaz6zfqdhj07%20wny&reflink=article_gmail_share
https://www.wsj.com/articles/blackstone-reit-plans-to-appoint-katie-keenan-as-ceo-11621424701?st=iaz6zfqdhj07%20wny&reflink=article_gmail_share
https://www.barrons.com/articles/house-prices-are-soaring-rents-are-flat-what-does-it-mean-for-inflation-516215%2025998?st=8ih1bt5c6uwis7h
https://www.barrons.com/articles/house-prices-are-soaring-rents-are-flat-what-does-it-mean-for-inflation-516215%2025998?st=8ih1bt5c6uwis7h
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and replacements affecting rented housing are not deducted from nominal returns. If so, the schism 

between rising home prices and achievable rents is even wider than has been assumed. (S.T.C. 

5/25/2021) 

 

U.S. Home Prices Push to Record High, Slowing Pace of Purchases (The Wall Street Journal, 

5/21/202115). “Cost for existing properties up 19% in April from year earlier; supply of homes 

remains limited.” 

Declines in the pace of home sales are directly correlated with limited supply. Constraints on 

the supply of new homes include delays in the availability of materials and subcontractors. 

Furthermore, the rapid increase in home prices in many markets has made them unaffordable for 

many buyers. In short, the home market is in disequilibrium. (S.T.C. 5/23/2021) 

 

Bet on a Rental Resurgence as Housing Boom Ages. Here’s How (Barron’s, 5/21/202116). 

“Home builders are slowing construction, a development—or really a lack thereof—with import 

for the path of inflation, economic growth, and the stock market.” 

The metric this article describes (the relationship between renting and the imputed rent of 

owned homes) is a useful tool. However, several other factors influence demand for both housing 

choices. Although the author mentions “a trend toward reurbanization,” there is scant evidence of 

such a trend. Indeed, many people have left, and continue to leave, large urban areas for reasons 

other than housing affordability, such as lower costs of living, personal safety, and preferable 

lifestyles. The work-from-home phenomenon and its hybrids are unlikely to be a passing 

phenomenon. (S.T.C. 5/25/2021) 

 

U.S. Bankruptcy Tracker: Real Estate Breaks Chapter 11 Lull (Bloomberg, 5/25/202117). 

“The real estate sector last week broke a short-lived lull in U.S. bankruptcy court filings, with two 

companies seeking protection from creditors.” 

This article fails to discuss highly significant elements in the lower numbers of Chapter 11 

filings. One such element is the federal government’s vast provision of dollars to companies and 

individuals, the intended purpose of which was to offset, at least in part, the economic impacts of 

COVID-19. A second important factor is the extremely low interest rates. Such rates have had the 

effect of reducing debt service levels as well as inflating asset prices (e.g., equities). The expiration 

of federal assistance will place renewed stress on highly leveraged corporations and will likely 

result in increased levels of Chapter 11 filings. (S.T.C. 5/26/2021) 

 

In Tight Housing Market, Thousands of Homes Are Reserved for Certain Buyers (The Wall 

Street Journal, 5/26/202118). “‘Whisper listings,’ made directly to select customers, are growing 

at a time when housing inventory is near record lows.” 

 
15 https://www.wsj.com/articles/u-s-home-prices-push-to-record-high-slowing-pace-of-purchases-11621605953?st= 

j4ffe5ful1nc4ke&reflink=article_gmail_share. 
16 https://www.barrons.com/articles/bet-on-a-rental-resurgence-as-housing-boom-ages-heres-how-51621624502?st= 

m8bog0utm3p5krk. 
17 https://www.bloomberg.com/news/articles/2021-05-25/u-s-bankruptcy-tracker-real-estate-breaks-chapter-11-lull. 
18 https://www.wsj.com/articles/in-tight-housing-market-thousands-of-homes-are-reserved-for-certain-buyers-11622 

https://www.wsj.com/articles/u-s-home-prices-push-to-record-high-slowing-pace-of-purchases-11621605953?st=%20j4ffe5ful1nc4ke&reflink=article_gmail_share
https://www.wsj.com/articles/u-s-home-prices-push-to-record-high-slowing-pace-of-purchases-11621605953?st=%20j4ffe5ful1nc4ke&reflink=article_gmail_share
https://www.barrons.com/articles/bet-on-a-rental-resurgence-as-housing-boom-ages-heres-how-51621624502?st=%20m8bog0utm3p5krk
https://www.barrons.com/articles/bet-on-a-rental-resurgence-as-housing-boom-ages-heres-how-51621624502?st=%20m8bog0utm3p5krk
https://www.bloomberg.com/news/articles/2021-05-25/u-s-bankruptcy-tracker-real-estate-breaks-chapter-11-lull
https://www.wsj.com/articles/in-tight-housing-market-thousands-of-homes-are-reserved-for-certain-buyers-11622%20021400
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Pocket or whisper listings have always played a role in the real estate market, but these niche 

listings seem to be most beneficial to sellers in the luxury-home segment, primarily because luxury 

homeowners’ extreme privacy concerns generally make them reluctant to let multiple potential 

buyers preview their homes via open-house functions. Whisper listings do not serve the nonluxury 

market very well as they dramatically reduce competitive bidding by substantially reducing 

exposure and, consequently, produce a smaller buyer audience. In a nutshell, although whisper 

listings are a beneficial selling tool in the luxury-home segment, they do not appear to benefit the 

typical-home segment. (J.H.J. 5/26/2021) 

 

These news articles, released as the world began to recover from the COVID-19 pandemic, 

address the potentially irreversible changes in financial and social systems that impact real estate 

investing. In this book, we examine the components of an investment approach necessary for 

optimal adaptation to changing market conditions. We do so in the context of the real estate 

investment market and use model portfolios of REIT-based assets. 

A real estate investment trust (REIT) is a company that uses pooled investor capital to purchase 

and, typically, operate income-producing property or finance real estate. REITs have a defined 

investment policy, and most of them specialize in a property type: residential, retail, lodging, 

healthcare, industrial, office, etc. REITs may be formed as partnerships, trusts, or corporations and 

must adhere to organizational and income requirements to maintain their status.19 The three 

categories of REITs are based on income source: Equity REITs own and rent property, deriving 

income from rents and capital gains from sales; mortgage REITs make loans, so their income is 

tied to interest rates; and hybrid REITs combine equity and mortgage activity. REITs can be either 

private or offered as a publicly traded security. Participation in a privately held REIT generally 

requires a higher buy-in threshold and tends to be an investment that is less liquid. For the general 

investor, publicly traded REITs are bought and sold on the open market, giving shareholders access 

to a percentage of the gain or loss from the income. As with any risky asset, REIT income is 

volatile and represents only one asset class in any well-diversified portfolio. Within this asset class, 

diversification and liquidity can be further achieved through purchase of a REIT exchange-traded 

fund (ETF), a portfolio of REIT assets that trade on an exchange.  

Choosing a REIT ETF is of central importance to the general investor. A REIT ETF is designed 

on the basis of a number of factors, both qualitative and quantitative. The qualitative components 

generally come from the experience (and philosophy) of the team actively acquiring and managing 

the portfolio. The quantitative components center on the method for assigning weights to the 

individual assets in the portfolio. The details of the construction of a REIT ETF and its 

management are usually available to the public only in general qualitative terms. As a general 

benchmark, a REIT ETF is designed with the goal of performing as well as, and preferably better 

than, a particular REIT market index. 

A market index is a time series that measures the performance of (a subset of) a financial 

market. It compares current prices (equivalently, returns) with past prices (returns) to quantify 

market performance over time. It is computed from the prices of select assets using a method for 

weighting prices from different assets. To generate user confidence, the index must be both 

 
021400. 
19 IRC sections 856(a), 856(c), and 856(h). 

https://www.wsj.com/articles/in-tight-housing-market-thousands-of-homes-are-reserved-for-certain-buyers-11622%20021400
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transparent and investable (Lo, 2016). With respect to transparency, the index-construction method 

must be specified, typically through a public “methodology” document. As noted above, 

investability is achieved through the existence of index-tracking ETFs. Current REIT-index-

methodology documents exhibit little to no use of modern quantitative risk-management 

techniques that evaluate the selection and weighting of the assets comprising an index. 

Of importance to the real estate investment community is the development of ETFs (portfolios) 

that have differing risk–return profiles. This is the subject of Chapters 2–7, in which we explore 

model REIT-based portfolios. In its most essential terms, portfolio optimization consists of three 

components: a method of selecting assets for the portfolio, a method of choosing the weight of 

(percent investment in) each asset in the portfolio, and constraints placed on the optimization, 

which will limit the assignment of weights. The first two methods, asset selection and weight 

determination, may be time varying or fixed (this is determined at the portfolio’s initiation). 

Generally, a fixed choice of constraints is imposed on the portfolio for finite time periods, though 

constraints may be changed or updated infrequently.  

An exploration of all three of these components is beyond the scope of this study. For the 

purposes of this book, we consider only fixed asset selection. Chapter 2 provides a description of 

the REIT assets comprising the model portfolios examined throughout the book. We consider the 

26 largest (by market capitalization as of August 2017) domestic U.S. REIT ETFs and the seven 

largest (by market capitalization as of August 2017) foreign REITs traded over the counter as 

American depository receipts (ADRs) in the United States. Similarly, Chapter 9 considers the five 

real estate stocks we use to examine portfolio diversification. We require benchmarks against 

which to compare the performance of our prototype funds. For these, also listed in Chapter 2, we 

consider three REIT market indices, two REIT-index-based ETFs, and one broad-based market 

index. Chapter 2 describes an additional 13 assets, representing major stock market classes, which 

are used in the factor-analysis section of Chapter 10. 

We concentrate on methods for optimizing asset weights. Chapter 3 presents the basic 

mathematical background of modern portfolio theory (MPT), which is used for the daily 

optimization of the prototype funds whose performance we explore. MPT concentrates on the 

maximization of expected portfolio return while minimizing risk. We consider two standard 

measures of portfolio risk: mean variance and conditional value-at-risk (CVaR). Mean variance 

captures the “central risk” inherent in a distribution of returns, whereas CVaR concentrates on the 

risk inherent in the “tails” of a distribution. Because market disruptions (crashes) and market 

overexuberance (bubbles) correlate strongly with either tail of the distribution of returns, tail risk 

is a critical measure.20 For each of these two measures, we consider either global minimization of 

the risk or maximization of the return–risk ratio: specifically, the Sharpe ratio (Sharpe, 1994) in 

the case of mean variance and the Sortino ratio (Rollinger and Hoffman, undated) in the case of 

CVaR. We also introduce the general formalism for applying constraints to the optimization. 

Because this book cannot address the entire range of constraints that may be imposed under this 

general formalism, we concentrate on a subset of constraints. 

Portfolios optimized with respect to mean variance are subject to three well-documented 

criticisms, which we briefly discuss. In Chapter 3, we also explore the Black–Litterman model 

 
20 See, for example, Guerard et al. (2013) for a comparison of optimization under mean variance and optimization 

under CVaR in portfolios that utilize a general stock-selection model. 
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(Black and Litterman, 1991), which mitigates these issues by using a Bayesian approach to 

incorporate market equilibrium returns and subjective views based on investment analyst 

estimates. 

We perform our initial exploration of these methods in the context of optimization, using a 

moving window of historical returns to generate optimum portfolio weights for each successive 

trading day. In Chapter 4, we present results for optimizations performed on the portfolio of 

domestic REIT ETFs. We consider long-only investment performance as well as several long–

short strategies. Virtually every change introduced into the portfolio, whether it be time-varying 

asset selection or changes in asset weights, will require the purchase or sale of asset shares, 

incurring transaction costs. Though transaction costs require up-front liquidity, the net effect is the 

degradation of overall portfolio return. We introduce turnover constraints as a proxy for controlling 

transaction costs. 

A plethora of measures has been introduced to compare the performance of different portfolios 

(Cogneau and Hũbner, 2009). In addition to the portfolio cumulative price and return over time, 

in Chapter 4 we introduce and utilize four of these performance measures to compare the 

performance of our model portfolios. These measures are chosen to represent different 

performance-measure categories introduced by Cogneau and Hũbner. 

In Chapter 5, we explore portfolio diversification by adding the international REIT assets into 

the portfolios discussed in Chapter 4. 

Chapter 6 explores optimizations under the Black–Litterman model. Because subjective views 

are specific to the market day and analyst, our generic exploration of this model is restricted to 

incorporating market equilibrium returns. We use the Fidelity Real Estate Investment Portfolio 

(FRESX) as the equilibrium benchmark. 

Optimization based on a moving window of historical return data provides a restricted set of 

independent observations that is used to predict the expected performance of the market during the 

subsequent trading session. In particular, past market behavior may not provide adequate samples 

of extreme market behavior that could significantly affect the expectation of future performance. 

In Chapter 7, we introduce dynamic portfolio optimization, which provides a statistically accurate 

large sample. Specifically, it uses statistical analysis of return data in a historical window to 

produce a dynamic prediction of returns for the subsequent trading session, which provides a basis 

for the optimization of asset weights to be used during the trading session after that. We explore 

the performance of dynamic optimization using the domestic REIT portfolio under long-only, 

long–short, and Black–Litterman strategies. 

Under regulatory guidelines, banks with substantial trading activity are required to set aside 

capital (the market-risk capital requirement) to insure against extreme portfolio loss. The market-

risk capital requirement is set on the basis of estimates of the VaR of the institution’s investments. 

The estimation of this VaR is known as backtesting. Chapter 8 presents backtest results for the 

selected portfolios under both historical and dynamic optimization using long-only investment 

strategies. 

In Chapter 9, we examine diversification by adding real estate stocks into the REIT portfolios 

discussed in Chapter 4. 

It is well-known that no single optimization strategy can provide adequate investment 

protection. Optimization must be accompanied by a suite of appropriate risk-management tools. 
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Chapter 10 explores additional risk-information-providing and risk-management tools, namely 

early warning systems that attempt to discern early signals of market disruption; incremental and 

component risk measures that guide the reallocation of portfolio assets; and analyses that identify 

a set of common factors responsible for a significant component of the observed behavior of a 

portfolio’s time-varying return.  

In Chapter 11, we extend MPT to consider an approach to portfolio optimization that includes 

constraints on the values of two performance measures (so-called performance attributes). We 

consider these in terms of the minimization of CVaR, though the methods are easily adapted to 

optimizations using other risk measures.  

Chapter 12 moves into the realm of insurance instruments by developing option-pricing 

methods based on our REIT model funds as the underlying asset. 

There is a growing push for companies and investment funds to adopt environmental, social, 

and governance (ESG) criteria. Companies and funds are ranked according to their performance 

relative to (various) ESG criteria.21 Investment practices that prioritize the ESG record or “score” 

of a company or fund are referred to collectively as socially responsible investing. We anticipate 

that this trend will engender legislative support. Devoted to an extension of MPT, Chapter 13 

moves from the analysis of a risk–return efficient frontier to that of an ESG–risk–return efficient 

frontier. The result leads to investment portfolios (funds) that maximize both return and ESG 

measures while minimizing risk. 
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Chapter 2 
The Data 

 

This chapter summarizes all the asset data used in the book. Section 2.1 describes the 26 domestic 

REIT ETFs and the seven international REITs traded over the counter as ADRs in the United 

States that are used to develop prototype portfolio-based funds. Section 2.2 describes the five real 

estate stocks used to diversity the prototype portfolios. Section 2.3 summarizes the benchmark 

data used to gauge the performance of our prototype portfolios. These benchmarks consist of REIT 

market indices, REIT-based ETFs, a REIT-based mutual fund, and a general market ETF. In 

section 2.4, we summarize additional assets representing major stock market classes used in the 

factor-analysis section of Chapter 10. Price data for all the assets was obtained from Bloomberg 

Professional Services, with the notable exception of data for two of the REIT market indices, which 

came from the Federal Reserve Bank of St. Louis. Cumulative price and return performance for 

the asset data are displayed in sections 2.1–2.3. 

 

2.1 REIT Asset Descriptions 

 

2.1.1 Domestic REITs 

 

Because the United States is the largest public equity market for real estate, it is important to base 

ETF construction on portfolios of domestic assets. Specifically, our domestic portfolios comprise 

the 26 largest (by market capitalization as of August 2017) U.S.-traded REITs. These are listed by 

market capitalization in Table 2.1, which also indicates their Wall Street Journal (WSJ) symbol, 

trust name, inception date, and real estate sector of specialization.22 

 

Table 2.1 The 26 largest domestic U.S. REIT ETFs by market capitalization (August 2017). 

WSJ Name Inception 

Date 

Sector Market Cap 

($bn)a 

AMT American Tower Corp. 02/26/1998 Specialty 57.90 
SPG Simon Property Group Inc. 12/13/1993 Retail 50.13 
PSA Public Storage 11/17/1980 Specialty 36.32 
CCI Crown Castle International Corp. 08/17/1998 Specialty 35.61 
PLD Prologis Inc. 11/20/1997 Industrial/Office 31.28 
AVB AvalonBay Communities Inc. 03/10/1994 Residential 26.34 
WY Weyerhaeuser Co. 05/02/1973 Specialty 25.87 
EQR Equity Residential 08/11/1993 Residential 24.66 

VTR Ventas Inc. 05/04/1997 Healthcare 24.36 
BXP Boston Properties Inc. 06/17/1997 Industrial/Office 18.30 
UDR UDR Inc. 03/16/1980 Residential 17.75 
ESS Essex Property Trust Inc. 06/06/1994 Residential 17.37 
SBAC SBA Communications Corp. 06/15/1999 Specialty 16.57 
O Realty Income Corp. 10/17/1994 Retail 15.65 
VNO Vornado Realty Trust 03/16/1980 Diversified 14.90 

 
22 As specified by GFM Asset Management; https://gfmasset.com/2017/08/top-200-us-listed-real-estate-investment-trusts-

reits-by-market-cap-as-of-2017q3/. 

https://gfmasset.com/2017/08/top-200-us-listed-real-estate-investment-trusts-reits-by-market-cap-as-of-2017q3/
https://gfmasset.com/2017/08/top-200-us-listed-real-estate-investment-trusts-reits-by-market-cap-as-of-2017q3/
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HCPa Healthpeak Properties 05/22/1985 Healthcare 14.80 
HST Host Hotels & Resorts Inc. 03/16/1980 Hotel/Lodging 13.29 
NLY Annaly Capital Management Inc. 10/07/1997 Mortgage 12.81 
MAA Mid-America Apartment Communities Inc. 01/27/1994 Residential 11.49 
ARE Alexandria Real Estate Equities Inc. 05/27/1997 Industrial/Office 11.12 
REG Regency Centers Corp. 10/28/.1993 Retail 10.92 
SLG SL Green Realty Corp. 08/14/1997 Industrial/Office 10.38 
DRE Duke Realty Corp. 02/05/1986 Industrial/Office 9.95 
FRT Federal Realty Investment Trust 05/02/1973 Retail 9.39 
IRM Iron Mountain Inc. 01/31/1996 Specialty 9.16 
MAC Macerich Co. 03/09/1994 Retail 8.34 
a Now trading under the symbol PEAK. 

 

What follows is a brief business description23 of each of the 26 domestic REITs, categorized by 

real estate investment sector. 

Diversified 

VNO: Vornado Realty Trust is a fully integrated real estate investment trust that owns, manages, 

and leases office properties in New York City, Chicago, and San Francisco. 

 

Healthcare 

HCP: Healthpeak Properties Inc. is a real estate investment trust that invests in healthcare-related 

properties throughout the United States. Properties include long-term-care facilities and acute 

care and medical office buildings. 

VTR: Ventas Inc. is a real estate investment trust that owns senior-housing communities, skilled 

nursing facilities, hospitals, and medical office buildings in the United States and Canada. 

 

Hotel/Lodging 

HST: Host Hotels & Resorts Inc. is a real estate trust that owns or holds controlling interests in 

upscale and luxury full-service hotel lodging properties in many areas, including Washington, 

DC; Toronto and Calgary, Canada; Mexico City, Mexico; and Santiago, Chile – as well as in 

Italy, Spain, Poland, Belgium, the Netherlands, and the United States. 

 

Industrial/Office 

ARE: Alexandria Real Estate Equities Inc. acquires, manages, expands, and develops office and 

laboratory properties. The company leases its properties to pharmaceutical, biotechnology, 

diagnostic, and personal-care-products companies, research institutions, and related government 

agencies. It serves customers in the state of California. 

BXP: Boston Properties Inc. operates as a real estate investment trust. The company owns, 

manages, and develops office properties in the United States, with a significant presence in 

Boston, Washington, DC, Midtown Manhattan, and San Francisco. 

DRE: Duke Realty Corp. owns interests in industrial, office, and medical office properties across 

the Southeastern, Midwestern, and Southern United States. The company provides leasing, 

 
23 See https://www.bloomberg.com/. 

https://www.bloomberg.com/
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property and asset management, acquisition, development, construction, build to suit, and other 

related services. 

PLD: Prologis Inc. is an owner, operator, and developer of industrial real estate, focused on global 

and regional markets across the Americas, Europe, and Asia. The company also leases modern 

distribution facilities to customers, including manufacturers, retailers, transportation 

companies, third-party logistics providers, and other enterprises. 

SLG: SL Green Realty Corp. is a fully integrated, self-administered, and self-managed real estate 

investment trust focused exclusively on owning and operating office buildings in Manhattan. 

 

Mortgage 

NLY: Annaly Capital Management Inc. is a capital manager that invests in and finances residential 

and commercial assets. The company’s principal business objective is to generate net income 

for distribution to its stockholders through capital preservation, prudent selection of 

investments, and continuous management of its portfolio. 

 

Residential 

AVB: AvalonBay Communities Inc. is a real estate investment trust that develops, redevelops, 

acquires, owns, and operates multifamily communities in the United States. 

EQR: Equity Residential is a real estate investment trust that acquires, develops, and manages 

apartment complexes in the United States. 

MAA: Mid-America Apartment Communities Inc. is a self-administered and self-managed real 

estate investment trust that owns, develops, acquires, and operates multifamily apartment 

communities in the Southeast and Midwest United States and Texas. In addition, the company 

conducts third-party property management, development, and construction activities through 

its service corporation. 

UDR: UDR Inc. is a self-administered real estate investment trust that owns, operates, and develops 

apartment communities located nationwide. 

 

Retail 

FRT: Federal Realty Investment Trust is a self-administered real estate investment trust that 

specializes in the ownership, management, development, and redevelopment of prime 

community and neighborhood shopping centers. Federal Realty Investment Trust serves 

customers in the United States. 

MAC: Macerich Co. is a fully integrated self-managed and self-administered real estate investment 

trust that focuses on the acquisition, leasing, management, development, and redevelopment of 

regional shopping malls throughout the United States. 

O: Realty Income Corp. owns and manages a portfolio of commercial properties located across 

the United States. The company focuses on acquiring single-tenant retail locations, which 

leases to regional and national chains under long-term net-lease agreements. 

REG: Regency Centers Corp. is a self-administered and self-managed real estate investment trust 

that owns and operates grocery-anchored neighborhood retail centers. The company currently 
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owns and operates properties in various states located throughout the United States. 

SPG: Simon Property Group Inc. is a self-administered and self-managed real estate investment 

trust that owns, develops, and manages retail real estate properties, including regional shopping 

malls, outlet centers, community/lifestyle centers, and international properties. Simon Property 

Group serves customers in the state of Indiana. 

 

Specialty 

AMT: American Tower Corp. is a real estate investment trust that owns, operates, and develops 

wireless communications and broadcast towers in the United States. The company leases 

antenna sites on multitenant towers for a diverse range of wireless communications industries, 

including personal communications services, paging, and cellular. 

CCI: Crown Castle International Corp. operates as a real estate investment trust. The company 

owns, operates, and leases towers and other infrastructure for wireless communications. Crown 

Castle manages and offers wireless communication coverage and infrastructure sites in the 

United States and Australia. 

ESS: Essex Property Trust Inc. is a self-administered and self-managed real estate investment trust 

company specializing in acquiring, developing, and managing multifamily residential properties. 

Essex has ownership interests in residential properties and commercial properties located in the 

states of California and Washington. 

IRM: Iron Mountain Inc. is a storage and information management company providing records 

management, data-management solutions, and information-destruction services. 

PSA: Public Storage is a real estate investment trust whose principal business activities are the 

acquisition, development, ownership, and operation of self-storage facilities in the United 

States. Public Storage also own an equity interest in an owner and operator of self-storage 

facilities in Europe. 

SBAC: SBA Communications Corp. owns and operates wireless communications infrastructure 

in the United States. The company offers site leasing and development, construction, and 

consulting services. SBA Communications leases antenna space on its multitenant towers to a 

variety of wireless service providers under long-term lease contracts. 

WY: Weyerhaeuser Co. is an integrated forest-products company with offices and operations 

worldwide. The company primarily grows and harvests trees, develops and constructs real 

estate, and makes a range of forest products. Weyerhaeuser is also classified as a REIT.  

 

The daily price data for each REIT was obtained from Bloomberg Professional Services, and 

it covers the common time period 12/13/1999 through 12/18/2020. Daily returns for each REIT 

were computed from the price data. To compare the performance of the REITs, we computed a 

cumulative investment price for each REIT assuming a $100 (long-only) investment in each on 

12/13/1999. The cumulative investment for each of the 26 domestic REITs is displayed in Fig. 2.1, 

which, for graphical clarity, groups the price plots by real estate investment sector. Fig. 2.1 also 

shows the resultant cumulative log-return time series for each REIT investment, grouped by the 

same sectors. 
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Figure 2.1 Cumulative price (left) and log-return (right) for the U.S.-traded REITs. Each time 

series assumes a $100 investment on 12/13/1999. Note that the plot of the VTR time series 

uses the right-hand axis. 

 

We make the following observations about the performance of these domestic REITs during 

this time period. 

1. VTR was the outstanding performer over this time period. It was strongly affected (maximum 

drawdown of approximately 50%) by the 2007–2008 financial crisis but recovered strongly, 

although with noticeable volatility since 2013. 

2. In general, the industrial/office-sector REITs were the lowest performers over this time period. 

These REITs experienced drawdowns exceeding 50% during the 2007–2008 financial crisis. 

Relative to each other, their postcrisis-recovery performance appears to mimic their precrisis 
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performance. 

3. The performance of the few REITs representing the mortgage, hotel/lodging, and diversified 

sectors were on par with the performance of the industrial/office sector.  

4. The performance of the REITs in the specialty group varied widely, with strong performance 

by VTR and ESS and weak performance by WY. 

5. With the exception of EQR, the residential REITs performed on par with one another. EQR 

was noticeably relatively unaffected by the 2007–2008 financial crisis. 

6. Although all the retail REITs were affected by the 2007–2008 crisis, their recovery after the 

crisis varied considerably. MAC and REG had difficulty recovering, whereas O recovered 

well. 

 

2.1.2 International REITs 

 

Studies have validated that international real estate investments can provide significant 

diversification benefits, including the opportunity to create cash flow and to form long-term 

wealth (e.g., Worzala and Sirmans, 2003). To address such diversification, we constructed 

international portfolios comprising the seven largest (by market capitalization as of August 2017) 

foreign REITs traded over the counter as ADRs in the United States. Table 2.2 lists these seven 

REITs and includes their WSJ symbol, trust name, inception date, country, and real estate sector 

of specialization. 

 

Table 2.2 The seven largest international REIT ETFs by market capitalization (August 2017). 

 

Ticker 

 

Name 

Inception 

Date 

 

Sector 

 

Country 

Market Cap 

($bn)a 

LKREF 
Link Real Estate Invest. 

Trust 
06/24/2008 Retail Hong Kong 17.34 

BTLCY 
British Land Co. PLC 

ADR 
01/30/2008 Diversified 

United 

Kingdom 
8.36 

JNRFY 
Japan Retail Fund Invest. 

Corp. ADR 
09/29/2005 Retail Japan 5.09 

CWYUF 
Smart Real Estate Invest. 

Trust 
06/24/2008 Retail Canada 3.95 

CDPYF 
Canadian Apartment 

Properties Real 
11/15/2005 Residential Canada 3.54 

 Estate Invest. Trust     

BOWFF 
Boardwalk Real Estate 

Invest. Trust 
08/25/2006 Residential Canada 1.89 

CIO City Office REIT Inc. 04/15/2014 Industry/Office Canada 0.38 
a https://gfmasset.com/2017/08/top-200-us-listed-real-estate-investment-trusts-reits-by-market-cap-as-of-

2017q3/ 

 

Below, we present brief business summaries of each international REIT, categorized by sector.  

 

https://gfmasset.com/2017/08/top-200-us-listed-real-estate-investment-trusts-reits-by-market-cap-%20as-of-2017q3/
https://gfmasset.com/2017/08/top-200-us-listed-real-estate-investment-trusts-reits-by-market-cap-%20as-of-2017q3/
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Diversified 

BTLCY: British Land Co. has a Level 1 ADR program. One British Land ADR represents one 

existing share of the company. The Bank of New York is the depositary bank. 

 

Industrial/Office 

CIO: City Office REIT Inc. is a real estate investment trust that targets office properties in cities 

in the Southern and Western United States. The Canada-based firm seeks to acquire, own, and 

operate office properties priced between $20 million and $50 million in a dozen target markets 

with growing populations and above average employment-growth forecasts. City Office REIT, 

which was spun off in late 2013 by the real-estate-focused private equity fund Second City 

Group, went public in the United States in 2014. 

 

Residential 

BOWFF: Boardwalk Real Estate Investment Trust is a real estate company that acquires and 

manages multifamily residential projects throughout Western Canada. 

CDPYF: Canadian Apartment Properties Real Estate Investment Trust owns and operates a 

portfolio of multiunit residential rental properties, including apartments, townhomes, and 

manufactured home communities located in and near major urban centers across Canada. Its 

portfolio includes fee-simple-interest apartments and townhomes, operating leasehold interests, 

land leasehold interests, and fee-simple-interest manufactured home community land lease 

sites. The company was founded in 1997, and is headquartered in Toronto, Canada. 

 

Retail 

CWYUF: Smart Centers Real Estate Investment Trust owns and operates shopping centers and 

focuses on acquisition, asset management, planning, development, leasing, operations, 

property management, and construction businesses. The trust serves clients in Canada. 

JNRFY: Japan Retail Fund Investment Corp. has been listed on the REIT section of the Tokyo 

Stock Exchange (securities code: 8953) since March 2002. It was the first investment 

corporation in Japan to specifically target retail property assets. As the largest Japanese REIT 

that specializes in retail properties, the company strives to secure stable distributions for its 

unitholders and steady increases in the value of its property portfolio through selective 

acquisitions of prime retail properties. It operates a Level 1 ADR program.  

LKREF: Link Real Estate Investment Trust is a real estate investment trust in Hong Kong. The 

trust owns and operates shopping centers, parking facilities, and real estate retail space.   

 

Price data on each international REIT was obtained from Bloomberg Professional Services, and it 

covers the common time period 04/13/2014 through 12/18/2020. To compare performance, a price 

time series was computed from daily returns assuming a (long-only) investment of $100 in each 

REIT on 04/13/2014. The cumulative price and log-return time series are displayed in Fig. 2.2, 

where the time series are color coded by real estate sector. Only CDPYF and LKREF show positive 

cumulative return over this time period. 
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Figure 2.2 Cumulative price (left) and log-return (right) for the international REITs. Each time 

series assumes a $100 investment on 4/13/2014. 

 

2.2 Real Estate Stocks 

 

In Chapter 9, we consider diversification of the domestic REIT portfolio by the addition of real 

estate company (non-REIT) stocks. Table 2.3 lists the five stocks added to the portfolio and 

includes their New York Stock Exchange ticker symbol, company name, inception date, country, 

and real estate sector of specialization. The choice of companies was based on a requirement that 

daily stock prices from 12/13/1999 through 12/18/2020 were available from Bloomberg 

Professional Services. Brief business summaries of each company follow the table. 

 

Table 2.3 The five real estate stocks used in Chapter 9. 

Ticker Name 

Inception 

Date Country 

BVH Bluegreen Vacations Holding Corp. 11/10/1997 United States 

JLL Jones Lang LaSalle Inc. 07/17/1997 United States 

MLP Maui Land & Pineapple Company Inc. 04/25/1994 United States 

NTP Nam Tai Property Inc. 08/06/1991 China 

TRC Tejon Ranch Co. 07/28/1980 United States 

 

BVH: Bluegreen Vacations Holding Corp. is a Florida-based holding company whose sole 

investment is 100% ownership of Bluegreen Vacations Corp. Bluegreen Vacations markets and 

sells vacation ownership interests and manages resorts in popular leisure and urban destinations. 

The Bluegreen Vacation Club is a flexible, points-based, deeded vacation ownership plan with 68 

Club and Club Associate Resorts and access to nearly 11,300 other hotels and resorts through 

partnerships and exchange networks. Bluegreen Vacations also offers a portfolio of 

comprehensive, fee-based resort-management, financial, and sales and marketing services to, or 

on behalf of, third parties. 

 

JLL: Jones Lang LaSalle Inc., founded in the United Kingdom, is a global commercial real estate 

services company with offices in 80 countries. The company buys, builds, occupies, and invests 

in a variety of assets, including industrial, commercial, retail, residential, and hotel real estate. The 

company also provides investment management services worldwide, including services to 

institutional and retail investors and to high-net-worth individuals. Its services include investment 

management, asset management, sales and leasing, property management, project management, 

and development. The company is ranked 179th on the Fortune 500. 
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MLP: Maui Land & Pineapple Company Inc. is a land holding and operating company founded 

in 1909 and based in Kapalua, Hawaii. It owns approximately 24,300 acres on the island of Maui. 

It develops, sells, and manages residential, resort, commercial, and industrial real estate, and it 

operates retail, golf, and utility operations at the Kapalua Resort. MLP also owns and manages the 

8,304-acre Puʻu Kukui Watershed Preserve, one of the largest private nature preserves in Hawaii. 

It formerly grew pineapples. 

 

NTP: Nam Tai Property Inc. is a China-based holding company that conducts business primarily 

in Mainland China. Through its subsidiaries, the company is engaged in the development and 

operation of technology parks. Its main land resources are located in Shenzhen and Wuxi, China. 

The company provides industrial offices, industrial service spaces, and supporting dormitories to 

the park tenants, and it provides comprehensive industrial services to corporate tenants through a 

full-chain industrial model. Its main projects and properties include Nam Tai Inno Park, Nam Tai 

Technology Center, Nam Tai Inno Valley, Wuxi Facilities, Nam Tai Tang Xi Technology Park, 

and Nam Tai U-Creative Space (Lujiazui). 

 

TRC: Tejon Ranch Co., based in Lebec, California, is one of the largest private landowners in 

California. The company was incorporated in 1936 to organize the ownership of a large tract of 

land that was consolidated from four Mexican land grants acquired in the 1850s and 1860s by 

ranch founder General Edward Fitzgerald Beale. The company owns over 270,000 acres in the 

Southern San Joaquin Valley, Tehachapi Mountains, and Antelope Valley. Tejon Ranch’s 

agricultural operation primarily grows almonds, pistachios, and wine grapes, along with some 

alfalfa and the occasional row crop. Cattle leases cover about 250,000 acres, providing grazing for 

as many as 12,000 head of cattle. 

 

  
Figure 2.3 Cumulative price (left) and log-return (right) for the real estate stocks. Each time 

series assumes a $100 investment on 12/13/1999. 

 

Fig. 2.3 displays cumulative price and log-return time series for each stock, assuming a $100 

investment on 12/13/1999. MLP has struggled to recover from the 2008 recession; as of 

12/18/2021, it is still showing negative cumulative return. Although TRC was impacted less by 

the recession, as of 12/18/2021, its cumulative return is also negative. The remaining three real 

estate stocks show positive cumulative return, with JLL being the strongest performer, though 

experiencing a high degree of price volatility. 

 

2.3 Benchmarks 
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2.3.1. Indices 

 

We utilize the following three REIT market indices as benchmarks against which to compare the 

performance of the prototype ETFs we develop in later chapters. 

 

WILLREITIND: Wilshire U.S. REIT Total Market Index 

WILLREITPR: Wilshire U.S. REIT Price Index 

Values for the indices WILLREITIND24 and WILLREITPR25 are provided by the Federal 

Reserve Bank of St. Louis. They are based on the Wilshire U.S. Real Estate Investment Trust 

IndexSM (Wilshire U.S. REIT), which measures U.S. publicly traded real estate investment 

trusts and is itself a subset of the Wilshire U.S. Real Estate Securities IndexSM (Wilshire U.S. 

REIT). The Wilshire U.S. REIT index is designed to offer a market-based index that is more 

reflective of real estate held by pension funds, because indexes are unencumbered by the 

limitations of other appraisal-based indexes. They can serve as proxies for direct real estate 

investing by excluding securities whose value is not always tied to the value of the underlying 

real estate. Exclusions include mortgage REITs, net-lease REITs, real estate finance 

companies, mortgage brokers and bankers, commercial and residential real estate brokers, 

home builders, large landowners and subdividers of unimproved land, hybrid REITs, and 

timber REITs. The rationale for the exclusions listed is that factors other than real estate supply 

and demand, such as interest rates, influence the market value of these companies.26 

FNRE: FTSE Nareit Equity REITs Index 

FNRE is part of the FTSE Nareit U.S. Real Estate Index Series.27 In particular, it is a sector-

specific subindex of the FTSE Nareit Composite Index. This investment sector includes all 

Equity REITs not designated as Timber REITs or Infrastructure REITs. Timber REITs invest 

in timber assets, including timberland and timber-related products and activities. Infrastructure 

REITs invest in infrastructure assets, including transportation assets (roads, bridges, tunnels, 

airports, etc.), energy and utilities assets (power generation, fuels, pipelines, etc.), water and 

waste management assets and communication assets (line-based networks, air-based networks, 

etc.). Infrastructure REITs do not include data center REITs. Details of the FTSE Nareit U.S. 

Real Estate Index Series can be found in the series rules.28 

 

For notational brevity, the REIT indices WILLRIETIND and WILLREITPR are referred to as WD 

and WP in the remainder of this book. 

 

2.3.2 Exchange Traded Funds 

 

 
24 https://fred.stlouisfed.org/series/WILLREITIND 
25 https://fred.stlouisfed.org/series/WILLREITPR 
26 https://wilshire.com/indexes/wilshire-real-estate-family/wilshire-us-reit. The fact sheet and methodology for the WILLREITIND 

index can be downloaded from this web page. 
27 See https://www.ftserussell.com/products/indices/nareit. 
28 https://research.ftserussell.com/products/downloads/FTSE_Nareit_US_Real_Estate_Index_Series.pdf.  

https://wilshire.com/indexes/wilshire-real-estate-family/wilshire-us-reit
http://www.ftserussell.com/products/indices/nareit
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Because indices are not traded, it is also important to benchmark against appropriate index-

tracking ETFs. We consider two REIT-index-based ETFs and one broad-based stock market index. 

The stock market index is used as an out-of-class benchmark to represent the general U.S. (and to 

some extent, the broader worldwide) stock market. 

VNQ: Vanguard Real Estate ETF 

VNQ29 is the most investor-popular REIT ETF, with over $50 billion in assets. Employing 

over 180 holdings, the fund currently seeks to track the MSCI U.S. IMI Real Estate 25/50 

Index, providing broad exposure to the U.S. real estate market. Note that the MSCI U.S. IMI 

Real Estate 25/50 Index was launched on 09/01/2016; due to its limited period of existence, 

our study does not consider it a benchmark index. 

USRT: iShares Core U.S. REIT ETF 

USRT30 seeks to track the FT index. As of this writing, it employs 155 holdings. The fund 

generally invests at least 90% of its assets in the component securities of the underlying index 

and may invest up to 10% of its assets in certain futures, options and swap contracts, cash, and 

cash equivalents. 

SPY: SPDR S&P 500 TRUST ETF 

SPY31 is an ETF designed to track the S&P 500 Index. 

 

2.3.3 Mutual Funds  

 

Our implementation of the Black–Litterman model (section 3.6) requires a market index. In our 

example computations, we use the following mutual fund for this purpose. 

FRESX: Fidelity Real Estate Investment Portfolio 

This fund seeks above-average income and long-term capital growth, consistent with 

reasonable investment risk. The fund seeks to exceed the composite yield of the S&P 500 

Index. At least 80% of the portfolio assets are in securities (primarily common stock) of 

companies principally engaged in the real estate industry and other real-estate-related 

investments. 

 

Price data on the benchmarks was obtained from Bloomberg Professional Services, and it covers 

the time period 12/18/2007 through 12/18/2020. To compare performance, a price time series was 

computed from daily returns assuming a (long-only) investment of $100 in each index or fund on 

12/18/2007. Fig. 2.4 displays the cumulative price and log-return time series. SPY and the 

(untraded) WD index are competitive performers over this time period, with the WD indices 

closely tracking each other. Over this period, VNQ, USRT, and the (untraded) WP and FNRE 

indices underperform. The performance of VNQ closely tracks the indices WP and FNRE. The 

performance of the mutual fund FRESX is intermediate between that of the low and high 

performers over this period. 

 
29 https://investor.vanguard.com/etf/profile/VNQ. 
30 https://www.ishares.com/us/products/239544/ishares-core-us-real-estate-etf. 
31 See https://www.etf.com/SPY. 

https://www.etf.com/SPY
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Figure 2.4 Cumulative price (left) and log-return (right) for the benchmarks. Each time series 

assumes a $100 investment on 12/18/2007. 

 

2.4 Additional Assets and Indices 

 

In the factor-analysis section of Chapter 10, we utilize 13 additional assets representing major 

market classes:32 equity, fixed income, and commodity. A brief business summary of each asset is 

presented here, ordered by the assets’ symbols as referenced by Bloomberg Professional Services. 

AGG: iShares Core U.S. Aggregate Bond ETF 

An ETF incorporated in the United States that seeks to track the Bloomberg Barclays U.S. 

Aggregate Bond Index. The fund invests in securities within the total U.S. investment-grade 

bond market. This includes treasuries, government-related and corporate securities, mortgage 

backed securities, asset backed securities, and commercial mortgage backed securities. 

EEM: ISHARES MSCI EMERGING MARKET 

An ETF incorporated in the United States that tracks the performance of the MSCI TR 

Emerging Markets Index. It holds emerging market stocks that can be classified predominantly 

as large- and mid-cap. It weights the holdings using a market capitalization methodology and 

rebalances quarterly. 

EFA: ISHARES MSCI EAFE ETF 

An ETF incorporated in the United States that tracks the performance of the MSCI EAFE 

Index. It holds large- and mid-cap stocks. Its investments are focused on developed countries 

across the world, excluding the United States and Canada. The ETF weights the holdings using 

a market capitalization methodology. 

HYG: iShares iBoxx $ High Yield Corporate Bond ETF 

An ETF incorporated in the United States that seeks to track the investment results of an index 

composed of U.S.-dollar-denominated, high-yield corporate bonds. 

IXIC: NASDAQ Composite 

Developed with a base level of 100 as of February 5, 1971, this index is a broad-based 

capitalization-weighted index of stocks in all three NASDAQ tiers: Global Select, Global 

Market, and Capital Market. 

MSCI: MSCI Inc. 

MSCI Inc., formerly Morgan Stanley Capital International, provides investment-decision-

 
32 See https://seekingalpha.com/article/4342477-major-asset-classes-april-2020-performance-review. 

https://seekingalpha.com/article/4342477-major-asset-classes-april-2020-performance-review
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support tools to investment institutions worldwide. The company produces indices and risk-

and-return portfolio analytics for use in managing investment portfolios. MSCI manages more 

than 145,000 daily equity, fixed income, and hedge fund indices for use by large asset 

management firms. MSCI is organized through two business segments: (i) Performance and 

Risk, which provides equity indices, portfolio-risk and performance analytics, credit analytics, 

and ESG products, and (ii) Governance, which provides corporate governance and specialized 

financial research and analysis. The company’s indices act as benchmarks that measure the 

performance of global funds. Institutional investors use the indices as research tools and as the 

basis of their various investment vehicles. MSCI’s Performance and Risk segment is by far its 

largest, accounting for 87% of the company’s revenue in 2012. MSCI makes the majority of 

its revenues (more than 75%) from annual recurring subscriptions to its products, with nearly 

half of the company’s revenues coming from outside the Americas.  

RUA: The Russell 3000 

This index is composed of 3,000 large U.S. companies, as determined by market capitalization. 

This portfolio of securities represents approximately 98% of the investable U.S. equity market. 

The index was developed with a base value of 140.00 as of 12/31/1986. 

SPBDUB3T: S&P U.S. Treasury Bill 0–3 Month Index Total Return 

This index, a subindex of the S&P/BGCantor U.S. Treasury Bill Index, comprises the 

constituents that have a maturity of zero to three months. 

SPGI: S&P Global Inc. 

This company provides clients with financial information services. It offers information 

regarding ratings, benchmarks, and analytics in the global capital and commodity markets. It 

operates worldwide. 

TIP: iShares TIPS Bond ETF 

An ETF incorporated in the United States designed to track the Bloomberg Barclays Capital 

U.S. Treasury Inflation Notes Index. This index measures the performance of inflation-

protected public obligations of the U.S. Treasury, also known as TIPS. 

USO: United States Oil Fund 

An ETF that attempts to track the price of West Texas Intermediate Light Sweet Crude Oil. 

USO invests in oil future contracts that are traded on regulated futures exchanges. 

VBINX: Vanguard Balanced Index Fund Investor Shares 

The fund employs an indexing investment approach designed to track the performance of the 

CRSP U.S. Total Market Index and Bloomberg Barclays U.S. Aggregate Float Adjusted Index. 

XAU/USD: Gold spot price in U.S. dollars/oz. 

 

2.5 Data Observations 

We close this chapter with two observations. 

• Our use of market capitalization to choose REIT assets does bias the ETF prototypes developed 

in this book; that is, we know, a posteriori, that all the REITs in our sample survived the 2008 

financial crisis. An examination of the effects of survivor bias on portfolios can be found, for 
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example, in Bloch et al. (1993). 

• A major benefit of using a sample of REITs with high liquidity and predominant ownership by 

institutional investors (average ownership of 88%)33 is that our results are unlikely to be the 

product of micromarket trading frictions and/or retail investor noise trading and should thus 

provide a cleaner test of the viability of the various risk–return portfolio-optimization 

techniques we examine in this book. 
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Chapter 3 
Modern Portfolio Theory 

 

This chapter introduces the basic elements of MPT that lie behind the development of our REIT-

based prototype ETFs. In section 3.1, we discuss stationarity and the need to consider returns rather 

than prices. Both discrete and log-returns are introduced. Section 3.2 introduces MPT optimization 

strategies. Markowitz optimization, which minimizes the mean variance of the return, is described 

in section 3.2.1. That section also introduces the concept of the efficient frontier, which is central 

to MPT. Section 3.2.2 covers optimization designed to maximize the Sharpe ratio and 

demonstrates the relationship between the efficient frontier and the capital market line. Sections 

3.2.3 and 3.2.4 extend the MPT of sections 3.2.1 and 3.2.2, respectively, to the case in which the 

risk measure is CVaR rather than mean variance. Critiques of mean-variance optimization are 

summarized in section 3.2.5, and the Black–Litterman model, created to address these problems, 

is covered in section 3.3. The implementation of these optimization techniques using moving 

windows of historical asset-return data is outlined in section 3.4. 

 

3.1 Return Time Series 

 

A stochastic process is stationary if its unconditional joint-probability distribution and all its 

distribution measures do not change over time. A process is weakly stationary if, at minimum, the 

mean and the covariance of the random variable are time independent. A great deal of time-series 

analysis is founded on the assumption of weak stationarity. Nonstationary behavior is determined 

mathematically by the presence of a unit root (a root of value 1) in the characteristic equation 

governing the process. Nonstationary processes are often (though not always) indicated by the 

presence of trends in the value of the random variable that change over time. Each price time series 

for the individual REITs listed in Chapter 2 is tested for the presence of a unit root using the 

augmented Dickey–Fuller test.34 At a 95% confidence level, these tests are unable to reject the null 

hypothesis of the presence of a unit root for any of the price series, indicating elements of 

nonstationarity. Visual examination reveals clear deterministic trends as well as a market bubble 

collapse (the 2007–2009 Great Recession) and the 2020 COVID-19 pandemic. 

Using nonstationary time-series data in financial models can produce unreliable or spurious 

results, which lead to poor forecasting. The solution is to transform the time-series data so that it 

becomes stationary. The technique of “differencing” is used to correct for nonstationarity. Applying 

first differences (see (3.1)) to a price time series results in the well-known return time series. 

Specifically, two types of return result from first differences. For asset 𝑖, the discrete (or simple) 

return, 𝑅𝑖(𝑡), and the log-return, 𝑟𝑖(𝑡), are defined as35  

𝑅𝑖(𝑡) = (𝑃𝑖(𝑡) − 𝑃𝑖(𝑡 − 1)) 𝑃𝑖(𝑡 − 1)⁄ = 𝑃𝑖(𝑡) 𝑃𝑖(𝑡 − 1)⁄ − 1 ,

𝑟𝑖(𝑡) = ln 𝑃𝑖(𝑡) − ln𝑃𝑖(𝑡 − 1) =  ln(𝑃𝑖(𝑡) 𝑃𝑖(𝑡 − 1)⁄ ) ,
 (3.1) 

where 𝑃𝑖(𝑡) is the closing price for asset 𝑖 on day t. These two returns are related: 

 
34 See, for example, https://en.wikipedia.org/wiki/Augmented_Dickey%E2%80%93Fuller_test for a brief synopsis. 
35 See, for example, Chapter 2 of Tsay (2010). 
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𝑅𝑖(𝑡) + 1 = 𝑃𝑖(𝑡) 𝑃𝑖(𝑡 − 1)⁄ = exp(𝑟𝑖(𝑡)) , (3.2) 

or 

𝑟𝑖(𝑇) = ln(1 + 𝑅𝑖(𝑡))  ≈ 𝑅𝑖(𝑡). (3.3) 

The approximation  𝑟𝑖(𝑇)  ≈ 𝑅𝑖(𝑡) holds quite well when daily asset returns are less than 1%. 

At close of trading, the daily discrete return, 𝑅𝑝(𝑡), of a portfolio is compactly expressed in 

terms of the discrete returns of its assets: 

𝑅𝑝(𝑡) =∑𝑤𝑖(𝑡) 𝑟𝑖(𝑡)

𝑛

𝑖=1

= 𝒘𝑇(𝑡) 𝒓(𝑡), (3.4) 

where 𝑤𝑖(𝑡) are the asset weights applied to the portfolio during trading day 𝑡, whereas 𝑟𝑖(𝑡) are 

the asset returns computed at the close of trading day 𝑡. The second equality in (3.4) expresses the 

portfolio simple return using vector notation.36 The relation between the discrete returns and log-

returns for a portfolio is the same as that given in (3.2): 

𝑅𝑝(𝑡) + 1 = 𝑃𝑝(𝑡) 𝑃𝑝(𝑡 − 1)⁄ = exp (𝑟𝑝(𝑡)), (3.5) 

where 𝑃𝑝(𝑡) is the value (price) of the portfolio at the close of trading day 𝑡. Note that a portfolio’s 

cumulative log-return 𝑟𝑝,𝐶(𝑇) satisfies 

𝑟𝑝,𝐶(𝑇) =∑𝑟𝑝(𝑡)

𝑇

𝑡=1

= ln(𝑃𝑝(𝑇) 𝑃𝑝(0)⁄ ) , (3.6) 

where 𝑃𝑝(0) represents the initial investment in the portfolio. In contrast, a portfolio’s cumulative 

discrete return 𝑅𝑝,𝐶(𝑇) is given by 

1 + 𝑅𝑝,𝐶(𝑇) =∏(1 + 𝑅𝑝(𝑡))

𝑇

𝑡=1

= 𝑃𝑝(𝑇) 𝑃𝑝(0)⁄  . (3.7) 

As we show below, Markowitz portfolio optimizations are written in terms of discrete returns. 

Although the approximation (3.3) holds most of the time, such that log-returns can replace discrete 

returns in the optimization, for cases in which daily returns become large (e.g., > 1%), the errors 

introduced by using log-returns in the Markowitz optimizations can become significant. For this 

reason, we perform optimizations using discrete asset returns. Log-returns for individual assets or 

for the portfolio can then be computed from (3.2) or (3.5). 

In (3.1)–(3.7), we are careful to distinguish discrete returns and log-returns with notation. For 

the rest of the book, we drop that distinction and use 𝑟𝑖(𝑡) (or the vector notation 𝒓(𝒕)) to refer to 

return. Unless otherwise noted, the return is always the discrete return. 

 

3.2 MPT-Based Portfolios 

 

 
36 By default, a vector 𝒗 is assumed to be a column vector, whereas its transpose, written 𝒗𝑇, is a row vector. Thus, 

the column vector, 𝒗, having elements 𝑣1, … , 𝑣𝑛 can be written 𝒗 = (𝑣1, … , 𝑣𝑛)
𝑇, and the row vector 𝒗𝑇 can be written 

𝒗𝑇 = (𝑣1, … , 𝑣𝑛). 
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Consider a portfolio consisting of 𝑛 risky assets whose vector of daily37 return values38 𝒓(𝒕) =

(𝑟1(𝑡), … , 𝑟𝑛(𝑡))
𝑇 is considered a multivariate random variable having mean value �̅� =

(�̅�1, … , �̅�𝑛)
𝑇 and standard deviation  𝝈 = (𝜎1, … , 𝜎𝑛)

𝑇. The returns between different assets are 

generally correlated, leading to an 𝑛 × 𝑛, nondiagonal, covariance matrix 𝚺 whose elements are 

Σ𝑖𝑗 ≡ σ𝑖𝑗 = 𝐸[(𝑟𝑖 − �̅�𝑖)(𝑟𝑗 − �̅�𝑗)], where 𝐸[∙] stands for expected value. The diagonal elements of  

𝚺 are the variances of the individual assets, Σ𝑖𝑖 = 𝜎𝑖
2. (When 𝑖 ≠ 𝑗, σ𝑖𝑗 is the covariance between 

assets 𝑖 and 𝑗.) If 𝒘(𝒕) = (𝑤1(𝑡), … ,𝑤𝑛(𝑡))
𝑇 are the weights applied39 to the assets during day 𝑡, 

then the return of the portfolio at the close of day 𝑡 will be given by (3.4), 𝑟𝑝(𝑡) = 𝒓
𝑇(𝑡)𝒘(𝑡). 

Because it is assumed that the portfolio is fully invested in the 𝑛 risky assets, we require the 

condition ∑ 𝑤𝑖(𝑡)
𝑛
𝑖=1 = 1 or, in vector notation, 𝒆𝑛

𝑇𝒘(𝑡) = 1, where 𝒆𝑛 is the n-dimensional unit 

vector.40 Because the asset returns are random variables, the portfolio return 𝑟𝑝 is also a random 

variable having mean value �̅�𝑝(𝑡) = �̅�
𝑇𝒘(𝑡) = 𝒘𝑻(𝑡)�̅� and variance 𝜎𝑝

2 = 𝒘𝑇(𝑡) 𝚺𝒘(𝑡). For 

notational brevity, we drop the time notation for the remainder of this chapter. 

 

3.2.1 Markowitz Mean-Variance Portfolio 

 

The objective of portfolio optimization under the Markowitz (1952) method is to determine the 

daily set of weights that minimize the return risk of the portfolio (for that day) subject to a desired 

expected return �̅�𝑝. The desired value of �̅�𝑝 reflects the risk aversion of the investor; the larger the 

value, the greater the risk the investor is willing to take on. Using the variance 𝜎𝑝
2 of the portfolio 

as the proxy for risk, we can express the Markowitz mean (return)-variance optimization as the 

desire to minimize the portfolio variance subject to desired expected return and full investment in 

the assets, that is, 

minimize 𝒘𝑇𝚺𝒘        subject to  �̅�𝑇𝒘 = �̅�𝑝   and   𝒆𝑛
𝑇𝒘 = 1. (3.8)    

Because the desired return �̅�𝑝 is changed, the optimum solution (𝜎𝑝 (𝒘(�̅�𝑝)) , �̅�𝑝) traces out a curve 

known as the portfolio frontier. Fig 3.1 shows an example of a portfolio frontier. 

Equation (3.8) is solved via standard Lagrange multiplier methods: 

min
𝒘,𝑞,𝜃0

𝐿(𝒘, 𝑞, 𝜃0) = min
𝒘,𝑞,𝜃0

(𝒘𝑇𝚺𝒘 2⁄ + 𝑞(�̅�𝑝 − �̅�
𝑇𝒘) + 𝜃0(1 − 𝒆𝑛

𝑇𝒘)) . (3.9)    

In the Lagrangian function 𝐿(𝒘, 𝑞, 𝜃0), 𝑞 and 𝜃0 are Lagrange multipliers representing, 

respectively, the constraints on 𝒓𝑇𝒘 and 𝒆𝑛
𝑇𝒘 in (3.8). Applying the optimizing conditions41 

𝜕𝐿(𝒘, 𝑞, 𝜃0) 𝜕𝑤𝑖⁄ = 0, 𝑖 = 1,… , 𝑛; 𝜕𝐿(𝒘, 𝑞, 𝜃0) 𝜕𝑞⁄ = 0; and 𝜕𝐿(𝒘, 𝑞, 𝜃0) 𝜕𝜃0⁄ = 0, (3.9) 

becomes the following system of linear equations: 

 
37 “Daily” refers only to trading days. 
38 These are assumed to be simple return values, 𝑟𝑖(𝑡) = (𝑃𝑖(𝑡) − 𝑃𝑖(𝑡 − 1))/𝑃𝑖(𝑡 − 1), where 𝑃𝑖(𝑡) is the daily 

closing prices of asset 𝑖. 
39 The weights are applied at the beginning of trading day 𝑡 and are assumed not to change during the trading day. 
40 𝒆𝑛 = (1, … , 1)𝑇. 
41 Because 𝐿(𝒘, 𝑞, 𝜃0) is quadratic in 𝒘 with a positive coefficient on the quadratic term, the optimizing condition is 

equivalent to a minimizing one. 
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Figure 3.1. Computational example showing the fundamental elements of modern portfolio theory 

optimization: efficient frontier, global minimum-risk and tangent portfolios, capital market line, 

risk-free rate, and the (risk, mean-return) coordinates of individual assets. The portfolio frontier 

consists of the union of the efficient frontier (black points) with the curve segment described by 

the gray points. The computation shown was performed using the standard deviation of the 

portfolio, 𝜎𝑝, as the risk measure. The picture would look similar if the risk measure were portfolio 

conditional value-at-risk, CVaR𝛼. 

 

𝚺𝒘 − 𝑞�̅� − 𝜃0 𝒆𝑛 = 0 ,

 �̅�𝑇𝒘 = �̅�𝑝 ,

𝒆𝑛
𝑇𝒘 = 1 .

 (3.10)    

Equation (3.10) can be solved analytically, leading to the solution 

𝒘∗  = �̅�𝑝𝒘1 + 𝒘2 ,  (3.11)    

where 

𝒘1 =
1

Δ
 (𝐵𝚺−1�̅� − 𝐶𝚺−1𝒆𝑛), 𝒘2 =

1

Δ
 (𝐴𝚺−1𝒆𝑛 − 𝐶𝚺

−1�̅�),

𝐴 = �̅�𝑇𝚺−1�̅� , 𝐵 = 𝒆𝑛
𝑇𝚺−1𝒆𝑛 ,

𝐶 = �̅�𝑇𝚺−1𝒆𝑛 , Δ = 𝐴𝐵 − 𝐶2.

 (3.12)    

Solving for 𝜎𝑝 = √𝒘∗𝑇 𝚺𝒘∗ gives 

𝜎𝑝 = √
𝐵�̅�𝑝2 − 2𝐶�̅�𝑝 + 𝐴

Δ
 . (3.12a)   
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Thus, the portfolio frontier points (𝜎𝑝(𝒘
∗), �̅�𝑝) trace out a hyperbola in standard deviation–return 

space.  

Equation (3.9) has a global minimum at the value 𝒘∗
min = 𝚺−1𝒆𝑛 𝐵⁄ . This portfolio has 

expected return �̅�𝑝,min = 𝐶 𝐵⁄  and standard deviation 𝜎𝑝,min = √1 𝐵⁄ , and it is referred to as the 

Markowitz minimum-variance portfolio. Points on the portfolio frontier that have expected mean 

returns greater than �̅�𝑝,min are said to lie on the efficient frontier. (A portfolio – i.e., a solution 

(3.11) – is on the efficient frontier if no other portfolio having the same standard deviation but 

higher expected return can exist.) Fig. 3.1 identifies the efficient frontier. Because each individual 

asset has a (historical) mean-return value, �̅�𝑖, and a (historical) standard deviation, 𝜎𝑖, each asset 

comprising the portfolio can also be represented (with a weight of 1) on the same plot as the 

efficient frontier, as indicated in Fig. 3.1. 

Additional constraints can be added to the minimization problem. For example, the 

minimization 

min
𝒘,𝑞,𝜃0,𝜽1,𝜽2

𝐿(𝒘, 𝑞, 𝜃0, 𝜽1, 𝜽2) =

min
𝒘,𝑞,𝜃0,𝜽1,𝜽2

[𝒘𝑇𝚺𝒘 2⁄ + 𝑞(�̅�𝑝 − �̅�
𝑇𝒘) + 𝜃0(1 − 𝒆𝑛

𝑇𝒘) + 𝜽1
𝑇(𝒘lb −𝒘) + 𝜽2

𝑇(𝒘 − 𝒘ub)] ,
 (3.13)    

imposes two additional constraints: that the weights exceed some lower bound of values, 𝒘lb, and 

do not exceed an upper bound of values, 𝒘ub. 42 Again, the elements of the vectors 𝜽1 and 𝜽2 are 

Lagrange multipliers.43 The full set of equations 

𝜕𝐿(𝒘, 𝑞, 𝜃0, 𝜽1, 𝜽2) 𝜕𝑤𝑖⁄ = 0, 𝑖 = 1,… , 𝑛;          𝜕𝐿(𝒘, 𝑞, 𝜃0, 𝜽1, 𝜽2) 𝜕𝑞⁄ = 0; 

𝜕𝐿(𝒘, 𝑞, 𝜃0, 𝜽1, 𝜽2) 𝜕𝜃0⁄ = 0;                                𝜕𝐿(𝒘, 𝑞, 𝜃0, 𝜽1, 𝜽2) 𝜕𝜃1,𝑖⁄ = 0, 𝑖 = 1,… , 𝑛; 

𝜕𝐿(𝒘, 𝑞, 𝜃0, 𝜽1, 𝜽2) 𝜕𝜃2,𝑖⁄ = 0, 𝑖 = 1,… , 𝑛 

provides sufficient conditions to solve for the values 𝒘, 𝜃0, 𝜽1, and 𝜽2.44 Equation (3.13) can 

specify a long-only strategy using 𝑤lb = 0, 𝜃2 = 0
45 or a long–short strategy by setting appropriate 

entries of 𝑤lb to be negative and 𝜃2 = 0.  Similarly, it is possible to constrain a subset, 𝑠, of the 

portfolio assets to account for a specified fraction, 𝑓𝑠, of the portfolio weight by employing a term 

𝜽𝑠(𝑓𝑠 − 𝒆𝑠
𝑇𝒘) in the minimizing Lagrangian function and by adding the conditions  

𝜕𝐿(𝒘, 𝑞, 𝜃0, 𝜽1, 𝜽2, 𝜽𝑠) 𝜕𝜃𝑠,𝑖⁄ = 0, 𝑖 = 1,… , 𝑛 to provide the additional equations necessary to 

solve for 𝜽𝑠 in the resulting linear system. Here, entries in the vector 𝒆𝑠 are given by 

𝑒𝑠,𝑖   = {
1, if  asset 𝑖 is in subset 𝑠 ,
0 , otherwise .

 (3.14)    

The appropriate use of 𝒆𝑠
𝑇and 𝑓𝑠 provides the basis for implementing the Lo–Patel 130/30 type 

investment strategy discussed in section 4.1.3. 

As the examples (3.9), (3.12), and (3.13) indicate, the exact shape traced out by the efficient 

frontier depends not only on the risky assets (specifically, their number, their mean return �̅�, and 

 
42 Specifically, 𝑤lb,𝑖 ≤ 𝑤𝑖  ≤ 𝑤ub,𝑖 ,   𝑖 = 1, … , , 𝑛. 
43 They are the vectors  𝜽1

𝑇 = (𝜃1,1, … , 𝜃1,𝑛 ), 𝜽2
𝑇 = (𝜃2,1, … , 𝜃2,𝑛 ). 

44 Some constraints may not, if fact, affect the minimizing solution. Standard techniques recognize when this occurs 

and eliminate such constraints from consideration. 
45 For a long-only strategy, it is sufficient to require 0 ≤ 𝑤𝑖 ,   𝑖 = 1, … , , 𝑛 and 𝒆𝑛

𝑇𝒘 = 1. 
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covariance structure 𝚺) but also on the constraints imposed. Mean-variance efficient frontiers 

numerically computed under limits on the percentage holding of any one asset can be found, for 

example, in Bloch et al. (1993). 

 

3.2.2 Capital Market Line and the Markowitz Mean-Variance Tangent Portfolio 

 

We now consider portfolios that include a single riskless asset having expected return 𝑟𝑓 along 

with the 𝑛 risky assets. Assume the weight of the riskless asset in the portfolio is 𝑤𝑓 . Now,  𝒆𝑛
𝑇𝒘+

𝑤𝑓 = 1. We formulate the optimization problem 

min
𝑤
𝒘𝑇𝚺𝒘/2  ,

such that (1 − 𝒆𝑛
𝑇𝒘)𝑟𝑓 + �̅�

𝑇𝒘 = �̅�𝑝.
 (3.15)    

Note that the second equation combines the restrictions 𝒆𝑛
𝑇𝒘+𝑤𝑓 = 1 and 𝑤𝑓𝑟𝑓 + �̅�

𝑇𝒘 = �̅�𝑝 into 

a single restriction. As a Lagrange multiplier minimization problem, this is 

min
𝒘,𝑞

𝐿(𝒘, 𝑞) = min
𝒘,𝑞

(𝒘𝑇𝚺𝒘/2 + 𝑞(�̅�𝑝 − (1 − 𝒆𝑛
𝑇𝒘)𝑟𝑓 − �̅�

𝑇𝒘)) . (3.16)    

Again, �̅�𝑝 acts as a parameter (desired expected return). The analytic solution to the system 

𝜕𝐿(𝒘, 𝑞) 𝜕𝑤𝑖⁄ = 0;   𝑖 = 1, … , 𝑛, 𝜕𝐿(𝒘, 𝑞) 𝜕𝑞⁄ = 0, is 

𝒘 = 𝑞(�̅�𝑝)𝚺
−1(�̅� − 𝑟𝑓 𝒆𝑛) ,

𝑞(�̅�𝑝) =
�̅�𝑝 − 𝑟𝑓

𝐵𝑟𝑓
2 − 2𝐶𝑟𝑓 + 𝐴

 ,
 (3.17)    

where 𝐴, 𝐵, and 𝐶 are given by (3.12). Evaluating the portfolio standard deviation 𝜎𝑝 = √𝒘𝑇 𝚺𝒘 

reveals 

𝜎𝑝(�̅�𝑝) = (�̅�𝑝 − 𝑟𝑓) √𝐵𝑟𝑓
2 − 2𝐶𝑟𝑓 + 𝐴⁄  ≡  𝑎�̅�𝑝 − 𝑏,  (3.18)    

where the last form emphasizes that 𝜎𝑝 varies linearly with  �̅�𝑝.  Thus, the risk–return profile 

(𝜎𝑝(�̅�𝑝) , �̅�𝑝 ) for the portfolio follows a straight line, the capital market line (CML), as �̅�𝑝 

(equivalently, 𝑤𝑓) is varied. 

• When 𝑤𝑓 = 1, the CML intersects the return axis at (0, 𝑟𝑓). 

• When 𝑤𝑓 = 0, the CML intersects the efficient frontier tangentially46 at the “market” portfolio 

value (𝜎𝑚, �̅�𝑚). 

The condition 𝑤𝑓 = 0 is equivalent to the statement that 𝒆𝑛
𝑇𝒘 = 1. From (3.17), this gives the 

weights 𝒘𝑚 for the market portfolio: 

𝒘𝑚 =
𝚺−1(�̅� − 𝑟𝑓 𝒆𝑛)

𝐶 − 𝑟𝑓𝐵
.  (3.19)    

 
46 It takes some computation to show that (3.20) satisfies (3.12a) – that is, that (𝜎𝑚, �̅�𝑚) is on the efficient frontier 

and that the slope of the efficient frontier determined by (3.12a) at (𝜎𝑚, �̅�𝑚) is indeed the slope of the CAPM line. 
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The mean return, �̅�𝑚, of the market portfolio is given by �̅�𝑚 = �̅�𝑇𝒘𝑚, and its standard deviation, 

𝜎𝑚, is given by (3.18) when �̅�𝑝 = �̅�𝑚. Evaluating these quantities gives the following analytic 

results: 

�̅�𝑚 = 𝑟𝑓 +
𝐵𝑟𝑓

2 − 2𝐶𝑟𝑓 + 𝐴

𝐶 − 𝑟𝑓𝐵
 ,

𝜎𝑚 =
√𝐵𝑟𝑓

2 − 2𝐶𝑟𝑓 + 𝐴

𝐶 − 𝑟𝑓𝐵
 .

 (3.20)    

From (3.20), we have the identity (�̅�𝑚 − 𝑟𝑓) 𝜎𝑚⁄ = √𝐵𝑟𝑓
2 − 2𝐶𝑟𝑓 + 𝐴. This identity can be 

used to rewrite equation (3.18) for the CML in the familiar form 

�̅�𝑝 = 𝑟𝑓 +
�̅�𝑚 − 𝑟𝑓

𝜎𝑚
𝜎𝑝 ,  (3.20a)   

which is the statement that all the portfolios (𝜎𝑝, �̅�𝑝) on the CML have the same Sharpe ratio 

(Sharpe, 1994) as the market portfolio: 
�̅�𝑝 − 𝑟𝑓

𝜎𝑝
=
�̅�𝑚 − 𝑟𝑓

𝜎𝑚
 . 

The CML and market (tangent) portfolio are also illustrated in Fig. 3.1. Equation (3.20a) can be 

written in the form of the capital asset pricing model (CAPM), �̅�𝑝 = 𝑟𝑓 + 𝛽𝑝(�̅�𝑚 − 𝑟𝑓), where 𝛽𝑝 =

𝜎𝑝 𝜎𝑚 ⁄ is the CML portfolio sensitivity (its beta) of its expected excess return to the expected 

excess return of the market portfolio (3.20). (The value of 𝛽𝑝 goes from 0 when 𝜎𝑝 = 0 [i.e., �̅�𝑝 =

𝑟𝑓], goes to 1 when 𝜎𝑝 = 𝜎𝑚 [i.e., �̅�𝑝 = �̅�𝑚], and exceeds 1 when �̅�𝑝 > �̅�𝑚.) 

The portfolio defined by (3.19) and (3.20) – and more generally, by the point on the efficient 

frontier to which the CML is the tangent – defines the Markowitz portfolio that maximizes the 

Sharpe ratio. It is also referred to as the tangent mean-variance portfolio. 

 

3.2.3 CVaR-Minimizing Portfolios 

 

The Markowitz mean-variance model establishes a framework for building similar strategies that 

use other measures as proxies for the portfolio risk. We now discuss portfolio optimization when 

CVaR is chosen as the portfolio risk measure.47 As implied by its name, CVaR is related to the 

concept of VaR, which is defined as follows. Let 𝐹(𝑥) = Pr{�̅�𝑝 ≤ 𝑥} denote the cumulative 

distribution function of the daily return �̅�𝑝 of a portfolio. Then 

VaR𝛼(�̅�𝑝) = −inf {𝑥 ∈ ℝ | 𝐹(𝑥) ≥ 𝛼  } . (3.21) 

The negative sign in (3.21) is a convention under which VaR values reported for losses are positive. 

We refer to 𝛼 as the tail probability. Conceptually, (3.21) states that if the portfolio return, �̅�𝑝, is a 

random variable having VaR𝛼(�̅�𝑝) = 𝑥𝛼,  then for 𝛼-percent of the time, the portfolio return will 

 
47 The Basel III regulatory framework for banks requires CVaR as the risk measure. 
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be a value that is less than (more negative than) −𝑥𝛼;48 that is, the loss (in positive dollars) will 

exceed 𝑥𝛼. Thus, an equivalent statement is that 𝑥𝛼 is the value corresponding to the 𝛼-th percentile 

of 𝐹(𝑥). CVaRα(�̅�𝑝) is defined as an average over all values VaR𝛾(�̅�𝑝), where 0 ≤ 𝛾 ≤ 𝛼: 

CVaRα(�̅�𝑝) =
1

𝛼
∫ VaR𝛾(𝑥)
𝛼

0

 𝑑𝛾 . (3.22) 

A daily VaR0.05 value of $1 million means there is a 5% chance that a portfolio could lose $1 million 

or more during a one-day period (assuming no changes in the portfolio over the day). In contrast, a 

daily CVaR0.05 value is an average of VaR values (for that portfolio) corresponding to all probabilities 

between 0% and 5%.49 Thus, a daily value of VaR0.05 = $1 million with a CVaR0.05 value of $5 

million indicates a 5% chance not only that the loss will exceed $1 million but also that the average 

loss expected will in fact be $5 million. For any given value of 𝛼, CVaRα(�̅�𝑝) ≥ VaRα(�̅�𝑝). 

The objective of the CVaR portfolio-optimization method (Rockafellar and Uryasev, 2000, 

2002; Krokhmal et al., 2002; Tütüncü et al., 2003) is to maximize return while minimizing CVaR, 

with CVaR most commonly measured at either the 95% or 99% quantile level (i.e., 1 − 𝛼 = 0.95 

or 0.99). Conceptually, the minimum CVaRα portfolio-optimization problem is formulated as 

min
𝒘
CVaRα(𝒘)         subject to �̅�

𝑇𝒘 = �̅�𝑝   and   𝒆𝑛
𝑇𝒘 = 1. (3.23)    

Unlike minimization of the variance, 𝒘𝑇𝚺𝒘, which is naturally expressed as quadratic in 𝒘 and 

leads automatically to a quadratic minimization problem, casting (3.23) into a form convenient for 

solution requires some work. In particular, the dependence of CVaRα on the asset weights 𝒘 must 

be elucidated. To do so, the random portfolio return �̅�𝑝 can be expressed as samples from a joint 

distribution function50 𝑓(𝒘, 𝒓) of the asset weights and mean returns. Let 𝑝(𝒓) denote the 

probability density function that determines the daily asset returns 𝒓. For any fixed value of 𝒘, the 

cumulative distribution of the daily portfolio returns is given by 

𝐹(𝒘, 𝑥) =   ∫  𝑝(𝒓)𝑑𝒓
𝑓(𝒘,𝒓)≤𝑥

. (3.24)    

Then 

VaR𝛼(𝒘) = −inf {𝑥 ∈ ℝ | 𝐹(𝒘, 𝑥) ≥ 𝛼  } , (3.25) 

and CVaR𝛼(𝒘) can be expressed as 

CVaR𝛼(𝒘) =
1

𝛼
∫ (−𝑓(𝒘, 𝒓))𝑝(𝒓)𝑑𝒓
−𝑓(𝒘,𝒓)≥VaR𝛼(𝒘)

 .  (3.26) 

As required in (3.23), (3.26) achieves the objective of expressing CVaR𝛼 in terms of asset weights, 

𝒘. However, (3.26) is not in a convenient form. Note that (3.25) and (3.24) give the relation 

 
48 Recall that VaR is defined as positive for losses. 
49 In addition, CVaR satisfies the desirable attributes of a coherent risk measure and is consistent with performance 

relations of risk-averse investors (see Pflug, 2000). 
50 It is common in the literature to define 𝑓(𝒘, 𝒓) alternatively as the loss probability function, whose samples provide 

negative return values. 
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𝛼 = 𝐹(𝒘, VaR𝛼(𝒘)) =   ∫  𝑝(𝒓)𝑑𝒓
−𝑓(𝒘,𝒓)≥VaR𝛼(𝒘)

 . (3.27)    

If we add the term VaR𝛼(𝒘) to and subtract the equivalent term 𝛼−1αVaR𝛼(𝒘) from (3.26) and 

use (3.27) to express 𝛼, we produce the following alternate form for CVaR𝛼(𝒘) (Rockafellar and 

Uryasev, 2000): 

CVaR𝛼(𝒘) = VaR𝛼(𝒘) +
1

𝛼
∫ (−𝑓(𝒘, 𝒓) − VaR𝛼(𝒘))

+𝑝(𝒓)𝑑𝒓
𝑅𝑛

 . (3.28) 

Here, 𝑦+ ≡ max (0, 𝑦). If 𝑓(𝒘, 𝒓) is a convex function of 𝒘, then CVaR𝛼(𝒘) is a convex function 

of 𝒘, guaranteeing the existence of a minimum value.  

In practice, (3.28) is evaluated for a portfolio using a sample of its asset returns 𝒓𝑡, 𝑡 = 1,… , 𝑇, 

from a finite historical time period 𝑇. The discrete form of (3.28) is therefore 

CVaR𝛼(𝒘) = VaR𝛼(𝒘) +
1

𝛼 𝑇
∑max (0, −𝒓𝑡

𝑇𝒘− VaR𝛼(𝒘))

𝑇

𝑡=1

 . (3.29) 

Using (3.29), we can approximate the minimization problem (3.23) with the discrete form 

min
𝒘
{VaR𝛼(𝒘) +

1

𝛼 𝑇
∑𝑦𝑡

𝑇

𝑡=1

} ,

such that 𝑦𝑡 ≥ max(−𝒓𝑡
𝑇𝒘− VaR𝛼(𝒘), 0) ,

�̅�𝑇𝐰 = �̅�𝑝 , 𝒆𝑛
𝑇𝒘 = 1 .

 (3.30) 

In (3.30), �̅� = 𝑻−𝟏∑ 𝒓𝑡
𝑻
𝒕=𝟏  is the vector of asset mean returns computed from the time period [0, 𝑇]. 

The relationship between VaR𝛼(𝒘) and CVaR𝛼(𝒘) is such that the value of 𝒘 that minimizes 

CVaR𝛼(𝒘) also minimizes VaR𝛼(𝒘). This leads to the following approach (Rockafellar and 

Uryasev, 2000; Tütüncü et al., 2003): 

min
𝒘,𝛾

𝐹𝛼(𝒘, 𝛾)   where

𝐹𝛼(𝒘, 𝛾) = 𝛾 +
1

𝛼
∫ (−𝑓(𝒘, 𝒓) − γ)+𝑝(𝒓)𝑑𝒓
𝑅𝑛

 .
  (3.31) 

The optimization function 𝐹𝛼(𝒘, 𝛾) is convex in 𝛾, and it is convex with respect to (𝒘, 𝛾) if 𝑓(𝒘, 𝒓) 

is convex in 𝒘 (Rockafellar and Uryasev, 2000).  In this approach, the discrete minimization 

problem (3.30) becomes 

min
𝒘,𝛾

{γ +
1

𝛼 𝑇
∑𝑦𝑡

𝑇

𝑡=1

} ,

such that 𝑦𝑡 ≥ max(−𝒓𝑡
𝑇𝒘− 𝛾, 0) ,

�̅�𝑇𝒘 = �̅�𝑝 , 𝒆𝑛
𝑇𝒘 = 1 .

 (3.32) 

Under this approach, the optimization function and constraints are manifestly linear in 

both 𝒘 and 𝛾, making the optimization problem a linear programming problem solvable 
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by, for example, the simplex method. 

As Tütüncü et al. (2003) note, the constraint on 𝑦𝑡 guarantees only that 𝑦𝑡 ≥ max (0, −𝒓𝑡
𝑇𝒘−

VaR𝛼(𝒘)). However, the minimization of the objective function guarantees that at the minimizing 

value 𝒘∗, 𝑦𝑡 = max (0, −𝒓𝑡
𝑇𝒘∗ − VaR𝛼(𝒘

∗)). 

As the parameter �̅�𝑝 varies, the minimizing solution (CVaR𝛼(𝒘
∗), �̅�𝑝(𝒘

∗)) produces the 

portfolio frontier curve in risk (CVaR𝛼) – return (𝑟𝑝) space. The portfolio frontier will have a 

convex (though not hyperbolic) form, with a single overall minimum value CVaR𝛼,min such that 

CVaR𝛼(𝒘
∗) ≥ CVaR𝛼,min for every minimizing solution 𝒘∗. The portfolio 𝒘min

∗  satisfying 

CVaR𝛼(𝒘min
∗ ) = CVaR𝛼,min is known as the minimum CVaR𝛼 portfolio. All the points on the 

portfolio frontier having �̅�𝑝(𝒘
∗) > �̅�𝑝(𝒘min

∗ ) comprise the efficient frontier. 

 

3.2.4 Capital Market Line and the 𝑪𝑽𝒂𝑹𝜶 Tangent Portfolio 

 

We again consider portfolios that include a single riskless asset having expected return 𝑟𝑓 along 

with the 𝑛 risky assets. Following the notation in sections 3.2.2 and 3.2.3, we formulate the 

optimization problem 

min
𝑤
CVaR𝛼(𝒘)  ,

such that (1 − 𝒆𝑛
𝑇𝒘)𝑟𝑓 + �̅�

𝑇𝒘 = �̅�𝑝.
 (3.33)    

Using the discrete form (3.32), this can be expressed as 

min
𝒘,𝛾

{γ +
1

𝛼 𝑇
∑𝑦𝑡

𝑇

𝑡=1

} ,

such that 𝑦𝑡 ≥ max(−𝒘𝑇𝒓𝑡 − (1 − 𝒆𝑛
𝑇𝒘)𝑟𝑓 − 𝛾, 0) ,

(1 − 𝒆𝑛
𝑇𝒘)𝑟𝑓 + �̅�

𝑇𝒘 = �̅�𝑝 .

 (3.34) 

At the minimizing values 𝒘∗, 𝛾∗ = VaR𝛼(𝒘
∗), either 𝑦𝑡 = 0  or 𝑦𝑡 = −𝒘

∗𝑇𝒓𝑡 − (1 − 𝒆𝑛
𝑇𝒘∗)𝑟𝑓 −

𝛾∗ > 0. Let 𝑆 = {𝑡 | 𝑦𝑡 > 0} and |𝑆| denote the number of entries in 𝑆. Then 

CVaR𝛼(𝒘
∗) = 𝛾∗ +

1

𝛼 𝑇
∑(−𝑟𝑝,𝑡(𝒘

∗) − 𝛾∗)

𝑡∈𝑆

= (1 −
|𝑆|

𝛼 𝑇
)𝛾∗ −

𝑓𝑠
𝛼 
�̅�𝑝 ,

where 𝑓𝑠 ≡
1

 𝑇�̅�𝑝
∑𝑟𝑝,𝑡
𝑡∈𝑆

(𝒘∗) .

 (3.35) 

Because �̅�𝑝 = (1 − 𝒆𝑛
𝑇𝒘∗)𝑟𝑓 + �̅�

𝑇𝒘∗ = 𝑇−1∑ 𝑟𝑝,𝑡
𝑇
𝑡=1 (𝒘∗),  𝑓𝑠 is the fraction of �̅�𝑝 contributed by 

the returns in the set 𝑆.51 Equation (3.35) shows that the curve (CVaR𝛼(𝒘
∗), �̅�𝑝) is a straight line, 

the CML in (CVaR, return) coordinates. Because �̅�𝑝 − 𝑟𝑓 = (�̅� − 𝑟𝑓𝒆𝑛)
𝑇
𝒘∗, it is evident that 𝒘∗ 

scales linearly as the difference �̅�𝑝 − 𝑟𝑓, with 𝒘∗ → 0 as �̅�𝑝 → 𝑟𝑓. Thus, for 𝒘∗ = 0, we have no 

investment in risky assets and CVaR𝛼(𝒘
∗ → 0) → 0. The slope of the straight line is the Sortino 

 
51 The returns in the set 𝑆 are negative. 
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ratio, (�̅�𝑝 − 𝑟𝑓) CVaR𝛼(𝒘
∗)⁄  (Rollinger and Hoffman, undated). This line touches the efficient 

frontier tangentially at the point (CVaR𝛼(𝒘𝒔
∗), �̅�𝑇𝒘𝒔

∗), where 𝒘𝒔
∗ is the scaled value satisfying 

𝒆𝑛
𝑇𝒘𝒔

∗ = 1. The portfolio having weights 𝒘𝒔
∗ is known as the tangent CVaR𝛼 portfolio. It 

maximizes the value of the Sortino ratio of the portfolio for a given value of CVaR𝛼(𝒘𝒔
∗). 

To conclude our discussion of CVaR-based portfolios in sections 3.2.3 and 3.2.4, we note that 

it is conventional to quote CVaR (and VaR) values based on the quantile level, that is, 1 − 𝛼. Thus, 

a tail probability, 𝛼 = 0.05, can be referenced as a 0.95 or a 95% quantile level. Thus, the notation 

CVaR0.05(𝑟), referring to the fifth percentile, is often written as CVaR95(𝑟), referring equivalently 

to the 95% quantile level. The use of CVaR0.05(�̅�𝑝) results in the statement that there is a 5% 

probability that returns will be worse than 𝑥0.05, whereas the use of CVaR95(�̅�𝑝) results in the more 

positive statement that there is a 95% probability that returns will be better than 𝑥0.05. We follow 

the convention of using percent levels to label CVaR and VaR values. 

 

3.2.5 Criticisms of Mean-Variance Optimization 

 

Simply stated, mean-variance optimization takes as input the expected mean returns and the 

covariance of the assets and produces optimized weights for each asset. Mean-variance 

optimization methods have three well-documented issues. To some extent, these issues also arise 

when the variance risk measure is replaced by that of CVaR. 

• Input sensitivity. He and Litterman (1999) demonstrate how a small change in the expected 

return of a few assets can give rise to dramatic changes in optimized weights, not only for those 

few assets but also, unexpectedly, for assets whose expected returns were not changed. 

• Unintuitive, highly concentrated portfolios. Best and Grauer (1991) examine the sensitivity of 

portfolios that consist of 10–100 assets to an increase in the expected return of a single asset. 

Specifically, they seek to determine the size of a single-asset increase needed to drive out of the 

portfolio at least one-half of the assets. As the number of assets in the portfolio grows, the 

increase in a single asset required to remove a fixed percentage of the assets from the portfolio 

decreases rapidly. 

• Estimation error maximization. As noted by Michaud (1989, pp. 33-34), “Mean-variance 

optimization significantly overweights (underweights) those [assets] that have large (small) 

estimated returns, negative (positive) correlations and small (large) variances. These [assets] 

are, of course, the ones most likely to have large estimation errors.” 

 

3.3 Black–Litterman Model 

 

Black and Litterman (1991) created a portfolio-construction method to address problems with 

mean-variance optimization. The Black–Litterman model overcomes the input-sensitivity problem 

by using a Bayesian approach to incorporate subjective views based on investment-analyst 

estimates and market-equilibrium returns (Kolm and Ritter, 2017). It also “largely mitigates” (Lee, 

2000) the problem of estimation-error maximization. By combining analyst views and equilibrium 

returns instead of relying only on historical asset returns, the Black–Litterman model provides a 

systematic way to evaluate the mean and covariance of asset returns. The model uses a Bayesian 



Analytics for the Real Estate Market  

 

  

approach in which prior (historical) knowledge of the distribution of the returns of the assets in a 

portfolio are combined with quantifiable views of the management team regarding future returns 

to estimate an (improved) posterior distribution of asset returns. One apparent restriction of the 

Black–Litterman method is that it relies on the additivity property of Gaussian (normal) 

distributions. This property will not hold if individual-asset returns are governed by non-Gaussian 

distributions. 

Assume the 𝑛 assets in the portfolio have a return vector, 𝒓, that follows a multivariate normal 

distribution: 

𝒓~𝑁(�̅�, 𝚺). (3.36) 

The mean return �̅� is an unknown parameter that the Black–Litterman model estimates by 

combining a management team’s views with prior knowledge of �̅�. This prior knowledge assumes 

that �̅� is also a normally distributed random variable: 

�̅�~𝑁(𝝅, 𝑪). (3.37) 

In the absence of a management team’s views, this prior mean return 𝝅 is most likely to be in 

equilibrium with the market. (This could also be interpreted in other ways. For example, 𝝅 could 

be the returns for a target optimal performance of the portfolio, such as a benchmark or index, or 

even just for the current portfolio.) The Black–Litterman model assumes that the covariance matrix 

𝑪 of the prior distribution of �̅� is 

𝑪 = 𝜏𝚺, (3.38) 

where 𝜏 is a small constant (Attilio, 2006). 

The experience of a management team provides an additional set of 𝑘 views regarding the 

expected returns �̅�. Each view consists of a statement of the expected performance of one asset or 

a combination of two or more assets in the portfolio. For example, a single view might be a 

statement about 

• the absolute return of an asset – for example, SPG will underperform the equilibrium return by 

1.25% (confidence of view = 25%); 

• the relative performance between two assets – for example, HST will outperform NLY by 

0.25% (confidence of view = 50%); or 

• the relative performance between asset classes – for example, healthcare REITs will 

cumulatively outperform specialty REITs by 2% (confidence of view = 65%). 

Each statement of a view contains (i) a quantitative measure (the expected performance), (ii) a 

specification of the asset(s) involved in the view, and (iii) an uncertainty (or level of confidence) 

of the view. Thus, a single view can be represented as 

𝑞𝑖 = E[𝒑𝑖
𝑇 𝒓 | �̅� ] + 𝜀𝑖 , 𝑖 = 1,… , 𝑘 .  

Here, 𝑞𝑖 is the quantitative value assigned to view i, which is described in terms of an expected 

value E[ ∙  | �̅� ] predicated on �̅�, as well as an uncertainty, 𝜀𝑖. Here 𝒑𝑖 is a vector (of 0s and 1s) that 

identifies which asset returns are involved. The full set of views can be written as the single vector 

statement 
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𝒒 = E[𝑷 𝒓 | �̅� ] + 𝜺 , (3.39) 

where 𝑷 is the matrix whose 𝑖th row identifies the assets involved in view 𝑖, 𝑖 = 1,… , 𝑘. The 

uncertainties in the views, 𝜀𝑖, are assumed to be normal random variables: 

𝜺~𝑁(0,𝛀) .  (3.40) 

If the 𝜀𝑖 are independent of each other, then 𝛀 is a diagonal matrix, diag(𝑤𝑖, … , 𝑤𝑘). Under 

assumption (3.36), (3.39) can be written 

𝒒 = 𝑷�̅� + 𝜺 . (3.41) 

As noted, the Black–Litterman model uses the Bayesian framework to combine prior 

knowledge about �̅� with the likelihood that management views will produce an improved posterior 

estimate, posterior ∝ likelihood × prior, of the distribution of asset returns: 

𝑓(�̅�  | 𝒒) ∝ 𝑓(𝒒 | �̅�) 𝑓(�̅�) . (3.42) 

If we continue to assume normal (Gaussian) statistics, the likelihood is given by 

𝑓(𝒒 | �̅�) ∝ exp [−
1

2
𝜺𝑇𝛀−1𝜺] = exp [−

1

2
(𝑷�̅� − 𝒒)𝑇𝛀−1(𝑷�̅� − 𝒒)] (3.43) 

and the prior is expressed as 

𝑓(�̅�) ∝ exp [−
1

2
(�̅� − 𝝅)𝑇𝑪−1(�̅� − 𝝅)]. (3.44) 

The posterior distribution is therefore 

𝑓( �̅� |𝒒) ∝ exp {−
1

2
[(�̅� − 𝝅)𝑇𝑪−1(�̅� − 𝝅) + (𝑷�̅� − 𝒒)𝑇𝛀−1(𝑷�̅� − 𝒒)]} , (3.45) 

which is again a normal distribution. Completing the squares on the argument of the exponential 

in (3.45) to cast it in the explicit normal form (�̅� − 𝑟BL)
𝑇ΣBL

−1(�̅� − 𝑟BL)/2 leads to the following 

identifications: 

𝒓BL = 𝚺BL(𝑪
−1𝝅+ 𝑷𝑇𝛀−1𝒒) , 

𝚺BL = (𝑪
−1 + 𝑷𝑇𝛀−1𝑷)−1 . 

(3.46) 

Equation (3.46) explicitly shows how the Black–Litterman model’s prediction of portfolio returns, 

𝑟BL, is expressed as a combination of “equilibrium” returns 𝝅 and management-team views, 𝑷, 𝒒. 

As (3.38) indicates, the value of τ−1 sets the relative weight given to 𝝅. The work of He and 

Litterman (1999) uses a value of 𝜏 = 0.025. Other authors have suggested using 𝜏 = 1/𝑛 (Atillio, 

2006). 

Combining the prediction for the posterior distribution governing �̅� with the prior distribution 

(3.36) for 𝒓 leads to the posterior distribution 

𝒓~𝑁(𝒓BL, 𝚺 + 𝚺BL) . (3.47) 

The primary products of the Black–Litterman method, the mean-return values 𝒓BL and covariance 

matrix 𝚺 + 𝚺BL, are natural inputs to a Markowitz mean-variance or tangent portfolio optimization. 

As noted above, these inputs overcome the input-sensitivity problem and “largely mitigate” the 
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problem of estimation error maximization. 

By specifying management-team views and determining the returns, 𝝅, this section provides a 

complete specification of the Black–Litterman method. Clearly, management views are portfolio 

specific and time specific. However, it is possible to provide general approaches to determining 

𝝅, including the use of reverse optimization. With reference to (3.9), consider the optimization 

problem 

min
𝒘
𝐸(𝒘) = min

𝒘
(𝒘𝑇𝚺𝒘 2⁄ + 𝛾−1(�̅�𝑝 − 𝝅

𝑇𝒘)) . (3.48) 

(Note that (3.48) does not impose any constraints on the asset weights.) The minimizing solution 

satisfies 

𝒘∗ = 𝛾−1𝚺−𝟏𝝅 , i. e.    𝝅 = 𝛾𝚺𝒘∗ . (3.49) 

Equation (3.49) can be used to relate the returns 𝝅 to the (properly constrained) weights of an 

“equilibrium” portfolio. One such approach is to use linear regression to determine the weights 

𝒘∗ = 𝒘mkt for the portfolio such that its mean return (linearly) tracks the return of a specific 

(market) benchmark over a specified historical time period. Constraints can be added to the 

regression in order to require, for example, that the weights be nonnegative (long-only investment) 

and that they sum to unity. 

In (3.49), 𝛾 can be viewed as a risk-aversion coefficient; the smaller the value of 𝛾, the greater 

the aversion to risk. An extant quantitative method of assigning a value to 𝛾 is to express risk 

aversion as 𝛾 = (𝐸(𝑟) − 𝑟𝑓)/𝜎
2 and realize this as 

𝛾 = 𝑆bm 𝜎mkt⁄  , (3.50) 

where 𝑆bm = �̅�bm 𝜎bm⁄  is the Sharpe ratio of the benchmark (mean benchmark return/standard 

deviation of benchmark returns), which is computed assuming a risk-free rate of zero, and 𝜎mkt is 

the standard deviation of the market portfolio, 𝜎mkt = (𝒘mkt
𝑇  𝚺 𝒘mkt)

1/2
. 

 

3.4 Historical Optimization 

 

In Chapters 4–6, we apply these optimization procedures to portfolios of REIT assets. We do so 

in the context of optimization based solely on historical return data. Fig. 3.2 illustrates the 

procedure. A rolling window of length 𝑇 days selects successive historical data periods. (Fig. 3.2 

illustrates the data period [𝑡 − 𝑇 + 1, 𝑡].) Each time period provides the daily returns of the assets 

(based on close-of-trading-day prices). Information about the asset returns is fed into the optimizer, 

which produces a predicted set of optimal portfolio weights for day 𝑡 + 1. The application of these 

weights to the portfolio is considered to take place at the beginning of day 𝑡 + 1, and the weights 

remain unchanged throughout the day. Thus, the predicted return of the optimized portfolio at the 

end of day 𝑡 + 1 would have been 𝑟𝑝,𝑡+1 = 𝒘𝑡+1
𝑇 𝒓𝑡+1. The rolling window is then advanced to 

cover the period [𝑡 − 𝑇 + 2, 𝑡 + 1], and optimized weights are produced for day 𝑡 + 2. Thus, for 

example, if a data set of returns covers 11 years of returns (with 252 daily returns per year), say 

for the trading days falling into the period 1/1/2010 through 12/31/2020, then with a rolling 

window of length for years (𝑇 = 4 ∗ 252), optimized portfolio weights would be computed for the 
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trading days lying within the seven-year period 1/1/2014 through 12/31/2020. The daily optimized 

portfolio returns, 𝑟𝑝,𝑡 = 𝒘𝑡
𝑇𝒓𝑡, computed for this seven-year period could be compared against 

actual returns of a market benchmark to determine how well the historical portfolio might have 

performed. This routine provides some measure of confidence in determining how well the 

optimization would work in practice. 

 

 
Figure 3.2. Schematic of optimization based on historical returns. 

 

Fig. 3.3 summarizes the historical information required by each of the optimization routines 

we have addressed. The time-varying measures 𝜎𝑖(𝑡) and CVaR𝛼,𝑖(𝑡) for any asset are measures 

of the volatility of the asset returns. In the moving-window method depicted in Fig. 3.2, these 

measures are encapsulated as averages developed over the asset-return values in the window. The 

average value is assumed not to change over the time period covered by the window. For this  

 

 
Figure 3.3. Schematic summary of required historical inputs into the optimization procedures. 

 

reason, the historical optimization method is often referred to as a constant-volatility method. 
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It is critical to recognize that when utilized in practice, the performance of optimization 

methods based solely on historical data will be optimistic and subject to harsh realities. The most 

obvious of such realities is that events that take place during a given historical period do not predict 

(all) future events. Thus, a sample of historical returns may not contain low-probability tail events 

that may emerge on the next trading day. In addition, each change in daily weights must be 

accompanied by buy and sell orders to change the portfolio allocation accordingly. Each buy/sell 

order incurs transaction costs, generally a combination of broker’s fees and hard-to-precisely-

predict buy/sell prices because bid–ask spreads change relatively continuously over time for liquid 

assets and can be (relatively) large spreads in the case of low-liquidity assets. Weight changes that 

require unusually large market orders will therefore require time to process and will potentially 

occasion market awareness of the size of a position shift. 
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Chapter 4 
Historical Portfolio Optimization: Domestic REITs 

 

This chapter introduces a suite of optimized REIT-based portfolios to be considered as models for 

either REIT-based indices or ETFs. They serve as representative prototypes of strategies 

implemented by institutional investment managers of actively managed portfolios. The different 

risk–return profiles presented by the prototype portfolios serve as asset-allocation tools for 

accommodating various market environments and risk tolerances. We use six portfolio 

optimizations based on sections 3.2.1–3.2.4. Where appropriate, we also consider a traditional, 

nonoptimized, equal-weighted portfolio for comparison. The equal-weighted-portfolio strategy 

enjoys widespread use in practice because it does not require information about risk or return and 

maintains the initial asset diversity of the portfolio. These seven optimized portfolios are referred 

to throughout the book as follows: 

• MVP – the Markowitz minimum-variance portfolio of section 3.2.1 

• TVP – the Markowitz tangent mean-variance portfolio of section 3.2.2 

• M95 – the minimum CVaR95 portfolio of section 3.2.3 

• T95 – the tangent CVaR95 portfolio of section 3.2.4 

• M99 – the minimum CVaR99 portfolio of section 3.2.3 

• T99 – the tangent CVaR99 portfolio of section 3.2.4 

• EQW – the equal-weighted portfolio 

CVaR optimizations at both the 95% and 99% quantile levels are included to examine the 

effects of the amount of asset-return information available for the tail risk in these portfolios. For 

example, consider a 2,000-trading-day sample of returns for an asset. Information about the 1% 

CVaR tail-loss risk (99% quantile level) over this period is derived from only 20 (1%) of these 

return values, whereas information about the 5% CVaR is derived from a larger set of 100 return 

values. Thus, the behavior of a portfolio optimized under the CVaR95 risk measure and that of the 

same portfolio optimized under the CVaR99 risk measure can be significantly different.  

This chapter considers portfolios that consist of the domestic REIT assets introduced in section 

2.1. (Chapter 5 considers diversification of these portfolios by the addition of international REITs.) 

Optimal portfolio weights are determined using asset returns developed solely from historical daily 

data; consequently, the computations implicitly assume constant volatility in each historical 

window. This assumption will be relaxed in Chapter 7. Constraints are imposed on the 

optimizations to model controls on asset allocation and transaction costs.   

This chapter is structured as follows. The framework developed by Markowitz (1952) and its 

extensions outlined in Chapter 3 provide the basis for various strategies for obtaining increased 

returns under specified levels of risk. In section 4.1, we consider the performance of the seven 

portfolio optimizations in terms of cumulative price and return under a long-only investment 

strategy, two variations of long–short strategies, and a momentum strategy. With the exception of 

the momentum strategy, portfolio optimization (rebalancing) is performed daily. Because 

transaction costs associated with daily rebalancing can be expensive, to provide some control over 

these costs, in section 4.2 we introduce turnover as a cost proxy and consider performance under 
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increasing turnover constraint. In section 4.3, we introduce risk measures designed to quantify the 

relative risks of different portfolios. We conclude the chapter and offer some observations in 

section 4.4. 

 

4.1 Basic Strategies, Price, and Return Performance 

 

In addition to long-only investment strategies (section 4.1.1), we consider the performance of the 

optimizations of the portfolio of 26 domestic REITs under a general long–short strategy (section 

4.1.2) and under a restricted 130/30-type strategy (section 4.1.3). In section 4.1.4, we consider the 

consequences of a momentum-type strategy in which rebalancing is performed less frequently. 

Weights for the individual REITs in each portfolio are determined based on returns from a 

rolling window of 2,016 trading days (eight trading years). For example, optimized weights used 

for portfolio-return computations on 12/20/2007 are determined using data from the previous 2,016 

trading days, that is, the period 12/14/1999 through 12/19/2007. The time window of 2,016 trading 

days ensures a sample size large enough to create a meaningful value for the weights. Iterating this 

recursive scheme for each portfolio generates a daily sequence of optimized portfolio weights 

covering the period 12/20/2007 through 12/18/2020. Once an entire time sequence of optimal 

portfolio weights is constructed, performance measures are computed. Note that the methodology 

for the EQW strategy is vastly simplified. There is no 2,016-day rolling window and no weight 

optimization. Weights computed for day t are computed on the basis of an equal weighting of 

prices on day t – 1 for the assets in the portfolio. 

In performing portfolio optimization, a variety of additional constraints should be added to 

these basic formulations. The most relevant constraints include available budget, return, holding 

period, risk factors, transaction size, cardinality (number of assets), volatility, turnover (asset 

purchase/sale), and tracking error. Here, we include holding period and turnover constraints. 

Except for limits imposed by turnover constraints, we ignore transaction costs and, in the case of 

long–short strategies, margin costs and asset availability through brokers. 

 

4.1.1 Long-Only Strategy 

 

In this section, we consider the basic long-only strategy, in which all investment is in the assets 

and asset weights are restricted to the range [0,1]: 

∑𝑤𝑖(𝑡)

𝑛

𝑖=1

= 1, 0 ≤ 𝑤𝑖(𝑡) ≤ 1. (4.1)        

For now, we assume transaction costs are negligible. The performance of the cumulative price of 

each portfolio from 12/19/2007 through 12/18/2020, assuming a $100 investment in the portfolio 

on 12/18/2007, is shown in Fig. 4.1. The cumulative log-return of each portfolio is also plotted. 

With seven portfolios to consider, the plots shown in Fig. 4.1 become crowded if plots of the 

performance of all the benchmarks in Fig. 2.3 are also added. We therefore provide a low–high 

benchmark bracket against which to compare the performance of our portfolios by showing the 

performance of the better (VNQ) of the two lowest-performing ETFs and the highest-performing 

index (WD). 
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The three tangent portfolios, TVP, T95, and T99, outperform all others. Moreover, TVP and 

T95 outperform T99.52 MVP and M95 strongly track each other, and they generally equal or 

outperform the ETF VNQ. M99 outperforms VNQ. Interestingly, the nonoptimized EQW portfolio 

performs rather well, most noticeably in the postcrisis period 2010–2012. However, in the long 

term, it underperforms the tangent portfolios while outperforming the global risk- 

 

  
 

Figure 4.1 Cumulative price (left) and log-return (right) for the long-only domestic portfolio 

optimizations compared to those for the benchmarks. 

 

minimizing portfolios. Note the subtle differences between the performance of the tangent 

portfolios and the others in response to the 2020 pandemic. Although all the portfolios show a 

strong decline at the beginning of 2020, the tangent portfolios recover value very rapidly, whereas 

the others recover at a slower rate. However, the tangent portfolios begin to decline in the last 

quarter of 2020, a decline that is not evident in the risk-minimizing portfolios and benchmarks. 

 

4.1.2 Jacobs et al .  Long–Short Strategy 

 

Intuitively, a long–short optimized strategy could improve the expected return of a portfolio for a 

given volatility, though short selling brings its own set of risks outside of volatility. Jacobs et al. 

(1999) provide an overview of long–short portfolio management and adjust the MVP model to 

allow for long–short portfolios in which the long and short portfolio optimizations are performed 

simultaneously. (Optimizing separately leads to a suboptimal portfolio.) We therefore consider 

indices that use the six MPT-based strategies53 in combination with a Jacobs et al. (1999) long–

short strategy in which each asset weight is restricted as follows: 

∑𝑤𝑖(𝑡)

𝑛

𝑖=1

= 1, −𝑠 ≤ 𝑤𝑖(𝑡) ≤  1 + 𝑠. (4.2)        

Thus, any asset can be shorted up to 100 𝑠 % of the total portfolio weight, or a long position can 

be taken in an asset up to 100 (1 + 𝑠) %. Because asset weights are recomputed daily, the long 

and short positions are rebalanced daily with no consideration given to transaction or margin costs 

(maintenance margins, interest payments) or the availability of assets (e.g., through brokers). 

 
52 That T95 outperforms T99 could be related to the difference in the amount of historical data contributing information 

to these tail-risk measures. However, see the results for the dynamic simulations in Chapter 6. 
53 Because the EQW portfolio is long-only, it is not included in this comparison. 
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Fig. 4.2 displays the results of the cumulative price and log-return achieved by these portfolios 

under the aggressive choice 𝑠 = 0.3. No comparison to the benchmarks is provided, because the 

indices do not, and index-following ETFs generally do not, include shorting of assets. Overall, the 

performance of this long–short strategy is worse than that of the long-only portfolios. Now, after 

the 2008 market crash, all portfolios have difficulty rebounding. The MVP, M95, and M99 

portfolios show “relatively consistent” rebound trajectories, although the return of the M99 

portfolio  

 

  
 

Figure 4.2 Cumulative price (left) and log-return (right) for the Jacobs et al. long–short domestic 

portfolio optimizations constrained by (4.2) with 𝑠 = 0.3. 

 

falls much more than that of MVP and M95. The tangent portfolios experience “unstable recovery 

cycles,” rebounding slowly from lows around 2010 to highs around 2016, but then falling again 

and recovering to initial investment values only around 2019. Note the difference in behavior 

between the risk-minimizing and tangent portfolios in response to the 2020 pandemic. The risk-

minimizing portfolios show a decline in early 2020, remaining essentially flat for the remainder of 

the year. In contrast, the tangent portfolios avoid the initial decline and undergo a period of strong 

growth (doubling or tripling in value). This growth is not sustained: Prices collapse back by 50% 

(TVP, T95) to 100% (T99), stabilize for a while, and then show a sharp drop at the end of 2020. 

 

  

Figure 4.3 Cumulative price (left) and log-return (right) for the Jacobs et al. long–short domestic 

portfolio optimizations constrained by (4.2) with  𝑠 = 0.1. 

 

The poor performance of the Jacobs et al. approach clearly indicates that a successful long–

short strategy requires careful implementation. Our protype portfolio, consisting of 26 assets, is 

small. Allowing one or more assets to be shorted up to 30% is quite drastic. Fig. 4.3 displays the 
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cumulative log-return and price achieved by the optimized portfolios when a value of 𝑠 = 0.1 is 

used in (4.2). Compared with Fig. 4.2, Fig. 4.3 reveals notable improvements in all the 

optimizations, particularly the tangent portfolios. It is interesting to contrast the long–short 

behavior of the tangent portfolios, illustrated in Fig. 4.3, with their long-only behavior, depicted 

in Fig. 4.1, over the two-year period 2019–2020. In both cases, during 2019, TVP and T95 prices 

rose by 160% before falling back somewhat. Whereas these long-only portfolios exhibit a sharp 

price decrease at the beginning of 2020 and subsequent volatile recovery, the long–short portfolios 

show another 160% price increase followed by a volatile period. In both the long-only and long–

short cases, the tangent portfolios show price decreases at the end of 2020, and these decreases are 

larger for the long–short portfolios. 

 

4.1.3 Lo–Patel Long–Short Strategy 

 

We next consider a 130/30-inspired long–short strategy in which 30% of the starting capital comes 

from shorting and 130% of the starting capital is allocated to long positions. Lo and Patel (2008) 

construct such a 130/30 equity portfolio using the S&P 500 universe of stocks and a standard 

portfolio optimizer. Their strategy, employing monthly rebalancing, yields a benchmark time series 

of returns that they view as a 130/30 index. A 130/30 strategy is the leverage strategy 

∑𝑤𝑖(𝑡)

𝑛

𝑖=1

= 1, −𝑙𝑒𝑣 ≤ 𝑤𝑖(𝑡) ≤  1 + 𝑙𝑒𝑣 ,

∑max (0,

𝑛

𝑖=1

𝑤𝑖(𝑡) − 𝑤𝑖(𝑡 − 1)) ≤  1 + 𝑙𝑒𝑣 ,

∑max (0,

𝑛

𝑖=1

𝑤𝑖(𝑡 − 1) − 𝑤𝑖(𝑡)) ≤  𝑙𝑒𝑣 ,

 (4.3) 

 

  
(a) 
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(b) 

Figure 4.4 Cumulative price (left) and log-return (right) for the Lo–Patel long–short domestic 

portfolio optimizations constrained by (4.3) with (a) 𝑙𝑒𝑣 = 0.30 and (b) 𝑙𝑒𝑣 = 0.10. 

 

where 𝑙𝑒𝑣 = 0.30. It differs from the Jacobs et al. strategy in that the sum of the positive weight 

changes – line 2 in (4.3) – and the sum of the negative weight changes – line 3 in (4.3) – are 

restricted. Fig. 4.4 compares the cumulative price and log-return plots for optimizations performed 

under the leverage values 𝑙𝑒𝑣 = 0.30 and 𝑙𝑒𝑣 = 0.10. A leverage value of 0.30 is too aggressive 

for this small portfolio. Guerard et al. (2010), among others, have compared the performance of 

130/30 models to long-only models under Markowitz mean-variance optimization. 

 

4.1.4 Long–Short Momentum Strategy 

 

The momentum strategy we consider recognizes that investor sentiment favors positively performing assets 

(Soros, 1987; Tanous, 1997). We implement this via a holding period in which the portfolio weights remain 

unchanged for a specified period of time. Fig. 4.5 compares the cumulative price and log-returns for the 

Jacobs et al. long–short portfolios of Fig. 4.3 (𝑠 = 0.1) with the restriction that rebalancing occurs 

only every 𝜏 trading days, where 𝜏 ∈ {10, 20, 60, 252} days. These plots reveal several interesting 

features. Significant cumulative price increases occur for the tangent portfolios when 𝜏  
 

  
10 days 20 days 

  
60 days 252 days 

Figure 4.5 Cumulative price for the Jacobs et al. long–short domestic portfolio optimizations 

subject to 𝑠 = 0.1 ≤ 0.1 and a holding period (rebalance time) varying from one day to one year. 

 

changes from 1 to 10 days. Further increasing 𝜏 to 60 days results in a continued increase in T95 

but not in TVP or T99. Changing the rebalance period to 252 days (one year) produces decreases 
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in TVP and T95 and a significant decrease in T99. In contrast, the minimum-risk portfolios show 

little response to the change in 𝜏 until 252 days, when M99 shows strong improvement. 

Fig. 4.6 parallels the plots in Fig. 4.5 for the Lo–Patel strategy with 𝑙𝑒𝑣 = 0.10. Again, there is 

a strong price increase in TVP and T95, whereas the remaining optimizations show little change 

when 𝜏 changes from 1 (Fig. 4.4(b)) to 10. The price performance for all the portfolios remains 

relatively unchanged when 𝜏 changes from 10 to 20. Then, appreciable price improvements appear 

in all the portfolios when 𝜏 changes from 20 to 60. Rebalancing at 252 days produces continued 

price improvements for the minimum-risk portfolios and for T99 but some decrease for TVP and 

T95. Determining whether these details are specific to asset type (i.e., REITs) or a more general 

characteristic of the markets over this time period is beyond the scope of this book. However, what 

is clear is that a momentum strategy can improve the performance of strongly performing long–

short portfolios.  

 

  
10 days 20 days 

  
60 days 252 days 

Figure 4.6 Cumulative price for the Lo–Patel long–short domestic portfolio optimizations subject 

to 𝑙𝑒𝑣 = 0.1 and a holding period (rebalance time) varying from one day to one year. 

 

4.2 Performance under Turnover Constraints 

 

Here, we consider the issue of transaction costs induced by the redistribution of asset weights when 

rebalancing. Because transaction costs are asset specific, we use turnover as a quantitative measure 

of the relative expense of transaction costs of various optimizations. The turnover can be defined 

in terms of the 𝐿1-norm of the change in asset weights from day 𝑡 − 1 to 𝑡: 

‖∆𝑤𝑝(𝑡)‖1 =∑|𝑤𝑖(𝑡) − 𝑤𝑖(𝑡)|

𝑛

𝑖=1

 . (4.4)        

The turnover value is defined as 1/2 of the 𝐿1-norm: 
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TO(𝑡) =  0.5 ‖∆𝑤𝑝(𝑡)‖1 . (4.5)        

Fig. 4.7 displays histograms of the turnover values for the six MPT long-only optimizations of Fig. 

4.1. The historical period of asset returns used in these portfolio optimizations consists of 3,274 

trading days. Thus, each histogram contains 3,273 samples of TO. For MVP, 92% of the turnover 

values are less than 0.9% (0.009). However, a few values as large as 18% do occur. For TVP, in 

contrast, turnover values are more strongly distributed up to 10%, with values as large as 21%. 

Notably, for T95, M99, and T99, turnover values as large as 45% to 60% can occur. Thus, although 

the tangent portfolios offer the best price-return performance, they come with high turnover values 

(and hence high transaction costs). 

 

 
Figure 4.7 Histograms of turnover values (4.5) for the long-only domestic portfolio optimizations 

of Fig. 4.1. 

 

 
Figure 4.8 Time series of turnover values (4.5) for the long-only domestic portfolio optimizations 

of Fig. 4.1. 

 

Fig. 4.8 shows the turnover values distributed over time. For the minimum-risk portfolios, the 
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timing of large turnover values correlates with the 2008–2009 Great Recession and the start of the 

2020 pandemic. Large turnover is also evident during the 2017–2020 period. For MVP, which has 

the smallest turnover profile, this occurs largely during the 2017–2018 period. For M95 and M99, 

the turnover is stronger, extending essentially from 2017 to 2020. In the tangent portfolios, 

turnover rates are much more constant over time; the largest turnover values consistently occur in 

years 2016 and 2017. 

The challenge is therefore to maintain return performance while reducing costs. Imposing a 

turnover constraint, such as 

TO(𝑡) ≤ 𝐶TO , (4.6)        

is one method of achieving this. For example, setting 𝐶TO = 0.04 restricts the total of the 

magnitudes of asset-weight changes during a rebalance to values below 0.04 (i.e., 4%). As Figs. 

4.7 and 4.8 imply, there are days on which no weight solution that satisfies (4.6) can be found. For 

those days, we adopt a stepped approach, increasing 𝐶TO by the sequence of values 

{𝐶TO, 𝐶TO + 0.01, 𝐶TO + 0.02, 𝐶TO + 0.04, 𝐶TO + 0.08} until a weight solution 𝒘(𝑡) is found. If 

no solution is found by the end of the sequence, then we set 𝒘(𝑡) = 𝒘(𝑡 − 1). 
 Fig. 4.9 plots the cumulative price and log-return performance for these six portfolios run with 

a 4% turnover constraint. The price performance is relatively unchanged between Figs. 4.9 and 

4.1. (In fact, T95 and T99 improve slightly, the latter over the 2012–2016 time period.) 

 

  
Figure 4.9 Cumulative price (left) and log-return (right) for the long-only domestic portfolios 

optimized subject to a 4% turnover constraint. 

 

 
Figure 4.10 Histograms of turnover values (4.5) for the long-only domestic portfolio optimizations 

subject to a 4% turnover constraint. 

 

Fig. 4.10 plots the turnover-value histograms for these six portfolios run with the 4% turnover 

constraint. Comparing it to Fig. 4.7 demonstrates that the 4% turnover constraint plays a strong 

role in restricting transaction costs for TVP, T95, and T99. Fig. 4.11 shows the effect on the 

turnover time series. MVP, M95, and M99 have constrained turnover during the 2008–2009 and 

2016–2020 time periods, and MVP requires little application of the constraint. In contrast, the 
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tangent portfolios are constrained throughout the 2008–2020 time period. 

 

 
Figure 4.11 Time series of turnover values (4.5) for the long-only domestic portfolio optimizations 

of Fig. 4.1 subject to a 4% turnover constraint. 

 

Closely akin54 to the 𝐿1-norm (4.4) is the 𝐿2-norm of the change in asset weights from day 𝑡 −

1 to 𝑡: 

‖∆𝑤𝑝(𝑡)‖2 =
(∑|𝑤𝑖(𝑡) − 𝑤𝑖(𝑡)|

2

𝑛

𝑖=1

)

1 2⁄

 . (4.7)        

Rather than imposing a hard turnover constraint such as (4.6), recent scholars (e.g., Yen, 2016; 

Brodie et al., 2009; DeMiguel et al., 2009) have imposed an 𝐿1- or 𝐿2-norm constraint on portfolio-

weight changes utilizing penalty terms in the optimization function. This method results in a more 

stable portfolio by facilitating sparsity (more zero changes) among the portfolio weights (i.e., 

producing fewer active weights) and by alleviating overfitting (overfitting requires the 

optimization method to work too hard to find an optimal fit for financial data that clearly has some 

random noise as a component). In Chapter 11, we demonstrate the use of penalty functions to 

impose turnover and other constraints. The calculation of these norms sheds light on the sparsity 

and stability of our portfolios under the various optimization strategies.  

Rather than considering the histograms of the 𝐿2-norm data sets computed from each optimized 

portfolio time series, we display the TO and 𝐿2-norm data in box-whisker plots. Fig. 4.12 compares 

 
54 Consider the two vertices 𝑣1and 𝑣2 joined by the hypotenuse of a right triangle. Intuitively, the 𝐿2-norm (𝐿2-

distance), ‖𝑣1 − 𝑣2‖2, between 𝑣1and 𝑣2 is the length of the hypotenuse, whereas the 𝐿1-norm (𝐿1-distance), 

‖𝑣1 − 𝑣2‖1, is the sum of the lengths of the other two sides of the triangle. Thus, ‖𝑣1 − 𝑣2‖2 ≤ ‖𝑣1 − 𝑣2‖1. 
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these box-whisker plots for the six MPT-based long-only optimizations using no turnover 

constraint and a 4% turnover constraint. Recall that the “box” establishes the interquartile range 

(IQR), which is the distance between first-quartile, 𝑄1, and third-quartile, 𝑄3, values of the data 

distribution. The top whisker represents either (i) the distance from the top of the box to the 

maximum value, if that distance is less than 1.5 x IQR, or (ii) a distance that is 1.5 x IQR from the 

top of the box. The bottom whisker similarly represents either (iii) the distance from the bottom of 

the box to the minimum value, if that distance is less than 1.5 x IQR, or (iv) a distance that is 1.5 

x IQR from the bottom of the box. Any data point lying outside the range defined by the whiskers 

is considered an outlier and represented as an “x.” The middle line in each box establishes the 

median (𝑄2) value.55 

 

  
Figure 4.12 Box-whisker summary statistics of TO (4.5) and the 𝐿2-norm (4.7) for the long-only 

domestic portfolio optimizations subject to no turnover constraint (left) and a 4% turnover 

constraint (right). 

 

As the figure illustrates, for the long-only optimization with no turnover constraint, the 

minimum-risk portfolios, MVP, M95, and M99, have very narrow IQRs and, consequently, very 

short whiskers. Outliers appear exclusively as high values (which is clearly evident in the skewed 

histograms of Figs. 4.7 and 4.10). The number of outliers increases from MVP to M95 to M99. 

The tangent portfolio variant of each optimization technique has a larger IQR and more (as well 

as more highly valued) outliers. The results for the long-only optimizations with a 4% turnover 

constraint indicate a corresponding decrease in the maximum value of  TO and the 𝐿2-norm. A 

comparison of Figs. 4.7 and 4.10 reveals that the MVP and M95 turnover histograms remain 

relatively unchanged in moving from no turnover constraint to a 4% constraint.56 Thus, the box-

whisker plots for MVP and M95 are only slightly modified in moving to a 4% turnover constraint. 

The box-whisker plots for the remaining optimizations exhibit strong changes. As a result of the 

upper limit imposed by the turnover constraint, outliers are now absent and the median values of 

the distribution have shifted to larger values. 

Fig. 4.13 displays box-whisker plots for TO and the 𝐿2-norm for the six MPT portfolios 

optimized under (a) the long–short constraints in equation (4.2) with 𝑠 = 0.1 and 𝐶TO = 0.04; (b) 

the constraints in equation (4.3) with 𝑙𝑒𝑣 = 0.1; and (c) the constraints in (a) plus rebalancing only 

every 10 trading days. There is now a difference in behavior between TO and the 𝐿2-norm. For 

long–short investing under the constraints in (4.2) with 𝑠 = 0.1 and 𝐶TO = 0.04, the 4% turnover 

 
55 See, for example, https://en.wikipedia.org/wiki/Box_plot. 
56 After accounting for the differences in bin widths and x-axis scales. 
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constraint places a strong upper bound on the TO distribution for the tangent portfolios, TVP, T95, 

and T99 – to the extent that the only outliers are low values. For each of the M95 and M99 TO 

distributions, all the values lie within the box-whisker range. The TO turnover constraint affects 

the 𝐿2-norm distributions less strongly. 

 

   

   

(a) (b) (c) 

Figure 4.13 Box-whisker summary statistics of TO (4.5) and the 𝐿2-norm (4.7) for the domestic 

portfolio optimizations computed using (a) the Jacobs et al. long-short strategy with 𝑠 = 0.1 and 

𝐶TO = 0.04; (b) the Lo–Patel long-short strategy with 𝑙𝑒𝑣 = 0.1; and (c) the constrained strategy 

in (a) with a rebalancing period of 10 trading days. 

 

The constraints in the second and third lines of (4.3) impose TO constraints on two subsets of 

the assets, those undergoing positive weight change and those undergoing negative weight change 

from 𝑡 − 1 to 𝑡. The asset composition of these two subsets will change over time. Thus, the box-

whisker plots in Fig. 4.13(b) are less affected than those in 4.13(a). However, a comparison of the 

y-axis scales of Figs. 4.13(a) and (b) demonstrates that transaction costs will be larger for long–

short portfolios constrained by equation (4.3).57 

By imposing a restriction on how frequently the portfolio weights are rebalanced, so that 

‖∆𝑤𝑝(𝑡)‖1 = ‖∆𝑤𝑝(𝑡)‖2 = 0 for the majority of days, Fig. 4.13(c) explicitly indicates how the 

box-whisker plots are modified. By using a holding period of 10 trading days, the relation 

‖∆𝑤𝑝(𝑡)‖1 = ‖∆𝑤𝑝(𝑡)‖2 = 0 is guaranteed to hold 90% of the time. For the tangent portfolios, 

TVP, T95, and T99, TO = 0 for all but a very small set of days. For the minimum-risk portfolios, 

MVP, M95, and M99, the TO is nonzero for virtually the entirety of the remaining 10% of the 

 
57 Transaction costs can of course be controlled by further reducing the value of 𝑙𝑒𝑣. 
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time. In contrast, the results in Fig. 4.13(c) show that the 𝐿2-norm is nonzero for virtually the 

entirety of the remaining 10% of the time for all the long–short portfolios. 

 

 

 
Figure 4.14 Time series of turnover values (4.5) for the Jacobs et al. long–short domestic portfolio 

optimizations of Fig. 4.13(a). 

 

Fig. 4.14 shows the time series of turnover values for the portfolios in Fig. 4.13(a). As the 

MVP box-whisker plot in Fig. 4.13(a) reveals, 50% of the turnover values occur in the range 

(0.0025,0.009), with extreme values occurring in the range (0.02,0.04). In contrast, for the tangent 

portfolios, any turnover value less than 0.04 is an outlier. For M95 and M99, 50% of the turnover 

values lie between 0.02 and 0.035 and between 0.021 and 0.038, respectively. Except for MVP, 

no correlation in time between turnover value and any major stock market incident is evident. 

Fig. 4.15(a) illustrates the behavior of the cumulative log-return and price for these optimized 

portfolios constrained by (4.2) with 𝑠 = 0.1 and 𝐶TO = 0.04. The behavior of the risk-minimizing 

portfolios (MVP, M95, M99) remains relatively unaffected by these constraint changes. The 

performance of TVP, T95, and M99 depicted in Fig. 4.15 is enhanced relative to the performance 

depicted in Fig. 4.4. Fig. 4.15(b) compares the cumulative price and log-return of the portfolios of 

Fig. 4.15(a) with the restriction that rebalancing occurs only every 10 trading days. Comparing 

Fig. 4.15 to Fig. 4.4 shows that the performance of MVP and M99 remains unchanged, that the 

performance of M95 worsens, and that the performance of all the tangent portfolios improves. 
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(a) 

  
(b) 

 

Figure 4.15 Cumulative price (left) and log-return (right) for the Jacobs et al. long–short domestic 

portfolio optimizations under the constraint (4.2) with 𝑠 = 0.1 and 𝐶TO = 0.04 with (a) daily 

rebalancing and (b) a rebalance period of 10 trading days. 

 

4.3 Performance–Risk Measures 

 

In section 4.1, we consider portfolio performance in terms of cumulative price and return. These 

measures are important, but they must be balanced against competing measures of performance, 

of which there are a multitude. Cogneau and Hũbner (2009) present a classification scheme for 

101 performance measures. The scheme consists of four classes, based on performance–risk ratio, 

incremental return, investor risk preference (via a utility function), and market timing. The largest 

class of measures is that of performance–risk ratios, which Cogneau and Hũbner subdivide into 

three subclasses, depending on whether the risk component of the measure is absolute, systematic, 

or nonsystematic (i.e., capable of being eliminated by diversification). Factor models (see section 

10.4), such as Jensen’s alpha (Jensen 1968) and the Fama–French three- and five-factor models 

(Fama and French 1993, 2015), are classified under incremental return. We consider four 

performance measures from the performance–risk class, as follows. 

1. Maximum drawdown (MDD): 

MDD(𝑇) = max
𝑡∈(0,𝑇)

[ max
𝑠∈(0,𝑡)

(𝑃𝑝(𝑠) − 𝑃𝑝(𝑡))] , (4.8)        

where 𝑃(𝑆) is the cumulative price of the portfolio up through time 𝑆 and MDD(𝑇) is the largest 

peak-to-trough decline58 of the portfolio price during the time period [0, 𝑇]. 

 
58 Measured before a new peak is attained. 
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2. The Sharpe ratio (Sharpe, 1994): 

SR(𝑇) =
𝔼[𝑟𝑝(𝑡) − 𝑟𝑓(𝑡)][0,𝑇]

√var[𝑟𝑝(𝑡) − 𝑟𝑓(𝑡)][0,𝑇]

=
𝜇𝑝[0,𝑇]

𝜎𝑝[0,𝑇]
, 

(4.9) 

where 𝑟𝑝(𝑡) is the portfolio return, 𝑟𝑓(𝑡) is the risk-free rate for day 𝑡, and 𝜇𝑝 and 𝜎𝑝 are, 

respectively, the expected mean and standard deviation of the portfolio's excess return, 𝑟𝑝(𝑡) −

𝑟𝑓(𝑡). 

3. The Sortino–Satchell ratio (Sortino and Satchell, 2001): 

SS2(𝑇) =

𝔼 [(𝑟𝑝(𝑡) − 𝑟𝑓(𝑡))
+

]
[0,𝑇]

‖(𝑟𝑓(𝑡) − 𝑟𝑝(𝑡))
+

‖
2 [0,𝑇]

 , (4.10) 

where 𝑦+ ≡ max (0, 𝑦). The Sortino–Satchell ratio is defined for a general 𝑝-norm in the 

denominator; we choose the particular case 𝑝 = 2. 

4. The Rachev ratio (Rachev et al., 2008): 

RR𝛽,𝛾(𝑇) =

CVaR𝛽 (𝑟𝑓(𝑡) − 𝑟𝑝(𝑡))
[0,𝑇]

CVaR𝛾 (𝑟𝑝(𝑡) − 𝑟𝑓(𝑡))
[0,𝑇]

 , (4.11) 

which represents the reward potential for positive returns compared to the risk potential for 

negative returns at quantile levels defined by the user. In our analysis, we set 𝛽 = 𝛾 = 0.95. 

The smaller the value of MDD, the better the performance. For the ratios, the higher the value, the 

better the performance, with the caveat regarding the Sharpe ratio noted in the next paragraph. 

The choice of these performance–risk ratios was influenced by their role as various subclasses 

in the Cogneau–Hũbner classification and by the work of Cherdito and Kromer (2013), who 

consider the properties of reward–risk measures relative to the desirable qualities of monotonicity, 

quasi-concavity, scale invariance, and whether the measure is distribution-based. They maintain 

that every performance measure should be at least monotonic (a measure of “more” is better than 

a measure of “less”) and quasi-concave (the measure prefers averages to extremes and encourages 

diversification of risk rather than concentration). The Sortino–Satchell ratio (SS) satisfies all four 

properties. The Sharpe ratio (SR), which is the most commonly used performance measure, 

satisfies three of the four properties; it does not guarantee monotonicity, perhaps the most critical 

property of a risk measure. The Rachev ratio (RR), used by hedge funds that seek excessive returns 

and insure against big losses, also satisfies three of the four properties; it does not guarantee quasi-

concavity. 

Because the time period of our data set contains both the Great Recession and the COVID-19 

pandemic, computing a single value of a performance measure for the entire time period for each 

portfolio will reflect performance during only one of those two events. We therefore also compute 

values for each performance measure for a moving window of length 𝑇, giving a time-series view 

of an evolving measure. 
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(a) (b) 

Figure 4.16 MDD for the benchmarks using (a) 𝑇 = 1-year and (b) 𝑇 = 4-year moving windows. 

Note that each MDD(𝑡) value represents the largest drawdown seen over the period [𝑡 − 𝑇 + 1, 𝑡]. 
 

We first consider the MDD of the benchmarks. Fig. 4.16 shows the 𝑇 = 1 and 𝑇 = 4 year 

MDD plots for the benchmark indices (WD, WP, FT), ETFs (SPY, VNQ), and equal-weighted 

portfolio (EQW). The time periods covered are 12/17/2008 through 12/18/2020, in Fig. 4.16(a), 

and 12/16/2011 through 12/18/2020, in Fig. 4.16(b). The one-year plots reveal expectedly high 

MDD values during the Great Recession (60%–70%) and the pandemic (35%–45%). Between 

these two periods, yearly MDD values vary from roughly 10% to 25%. The stock market ETF, 

SPY, typically has the best MDD values. During the Great Recession period, maximum SPY 

drawdown is 20% better than that of the other benchmarks. Around 2014, from 2017 to 2018, and 

during the 2020 pandemic, the SPY one-year MDD remains relatively low compared to that of the 

real estate benchmarks. Only during 2019 does the MDD for SPY start to worsen relative to that 

for the real estate benchmarks. The real estate benchmarks generally track together. The 

performance of the EQW portfolio tends to fall between that of SPY and the real estate 

benchmarks, though with values closer to those of the real estate benchmarks. 

When computed over a four-year window, MDD values retain a longer memory of the largest 

drawdown values. Thus, the 2012 MDD values shown in Fig. 4.16(b) reflect MDDs during the 

2008–2009 period. Consequently, the behavior of four-year MDD during the period between the 

Great Recession and the pandemic reflects less change. The superior behavior of SPY relative to 

the real estate benchmarks during the period between the recession and pandemic is more apparent 

in the four-year plot. Because the four-year moving window averages out too much detail, we 

proceed with further comparison of the performance measures using only the one-year moving 

window. 

Fig. 4.17 presents the MDD, SR, SS, and RR time series for SPY, the real estate index WD, 

the real estate ETF VNQ, and EQW. The MDD results for these have been presented in Fig. 

4.16(a); they are presented again for convenient contrast to the behavior of the performance ratios. 

Low values of SR and SS during the recession and the pandemic are apparent. Again, SPY 

generally exhibits the best performance in these two measures, except during the Great Recession. 

Compared to SR and SS, the recession-related drop in RR is smaller and the pandemic-related drop 

in RR is of shorter duration. With respect to RR, SPY frequently lags behind or, at best, is on par 

with the others. 
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Figure 4.17 MDD, SR, SS, and RR time series (one-year moving window) for SPY, WD, VNQ, 

and EQW. 

 

  

  

Figure 4.18 MDD, SR, SS, and RR time series (one-year moving window) for the long-only 

domestic portfolio optimizations with 𝐶TO = 0.04. 

 

Fig. 4.18 presents the performance-measure time series for long-only domestic portfolios with 

𝐶TO = 0.04, whose price performances are shown in Fig. 4.9. The optimized portfolios exhibit 

qualitative time behavior similar to that of the benchmarks of Fig. 4.17, but the quantitative details 

differ. For example, during the Great Recession, MDD is smaller (by ≤ 10%) for the minimum-

risk portfolios (MVP, M95, and M99) than for the real-estate-based benchmarks, though not quite 

as small as for SPY, whereas the more aggressive tangent portfolios have MDD values on par with 

those of the EQW portfolio. During the pandemic, MDD values for the tangent portfolios are on 

par with SPY. The tangent portfolios generally outperform the minimum-risk portfolios in the risk 

measures. There are time periods of exception, such as in MDD during the Great Recession and in 

RR from late 2014 to early 2015. The tangent portfolios retain better performance in all the risk 

measures prior to and after the pandemic. 
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Figure 4.19 Box-whisker summaries of the statistics of the performance measures for the 

benchmarks identified in section 2.3 and the long-only domestic portfolio optimizations with 

𝐶TO = 0.04. 

 

Although plotting the box-whisker summary statistics results in a loss of temporal detail, it  

offers a better view of the performance odds for each method. Such plots also allow many more 

benchmarks and portfolios to be compared at the same time. This is demonstrated in Fig. 4.19, 

which compares MDD, SR, SS, and RR summary statistics for all seven benchmarks of section 

2.3 as well as for the six domestic long-only portfolios with 𝐶TO = 0.04. A comparison of the 

IQRs indicates the performance of the benchmark/portfolio over 50% of the historical period, 

whereas examining the whisker and outlier events gives data on the lower 25% and upper 25% 

occurrences. For example, with respect to MDD, we see that SPY has the overall best performance 

and that M95 is a close competitor. With respect to SR, SPY outperforms the other benchmarks 

but is outperformed by the tangent portfolios. With respect to SS, SPY outperforms the other 

benchmarks only in the sense that it has fewer low-value outliers, but SPY is again outperformed 

by the tangent portfolios. With respect to RR, it is less clear that SPY outperforms the benchmarks, 

and it is outperformed by all the optimized portfolios. In SR, SS, and RR measures, the tangent 

portfolios are clearly the top performers. The behaviors of the real-estate-based benchmarks and 

those of EQW are comparable to each other across all the measures. 

For comparison with Fig. 4.19, we consider the computation of a single value for each 

performance metric over the entire 12-year period 12/17/2008 through 12/18/2020. The results are 

summarized in Fig. 4.20. Over 12 years, M95, MVP, and SPY have the smallest MDD. All the 

optimized portfolios, as well as EQW, outperform the remainder of the benchmarks. With respect 

to SR and SS, the tangent portfolios are the top performers, and SPY is the best-performing 

benchmark. EQW and the real-estate-based benchmarks are the top performers relative to RR, with 

the tangent portfolios being reasonably competitive. SPY’s overall RR value is noticeably the 

worst. 
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Figure 4.20 Values for each performance measure computed for the time period 12/17/2008 

through 12/18/2020 for the benchmarks identified in section 2.3 and the long-only domestic 

portfolio optimizations with 𝐶TO = 0.04. 

 

  

  
Figure 4.21 Box-whisker summaries of the statistics of the performance measures for the 

benchmarks identified in section 2.3 and the Jacobs et al. long–short domestic portfolio 

optimizations constrained by (4.2) with 𝑠 = 0.1 and 𝐶TO = 0.04. 

 

Using the box-whisker summaries, we compare the performance of the long–short strategies 

with that of the long-only strategies. Fig. 4.21 presents a summary of the Jacobs et al. long–short 

domestic portfolio constrained under (4.2) with 𝑠 = 0.1 and 𝐶TO = 0.04, whose price performance 

is shown in Fig. 4.4. The performance measures for the benchmarks and EQW portfolios are 

identical to those illustrated in Fig. 4.19; they are repeated here to facilitate comparison. At first 

sight, the long–short portfolios have better MDD outlier behavior than the long-only portfolios, 

but note that the whiskers are longer. In addition, the IQR ranges tend to move up in response to 

the long–short strategy. The long–short SR values are generally worse than those for the 
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corresponding long-only portfolios. The SS and RR values for the long–short minimum-risk 

portfolios are slightly better than those for the long-only portfolios.  

 

  

  
Figure 4.22 Box-whisker summaries of the statistics of the performance measures for the 

benchmarks identified in section 2.3 and the Lo–Patel long–short domestic portfolio optimizations 

constrained by (4.3) with 𝑙𝑒𝑣 = 0.10. 

 

Fig. 4.22 summarizes the Lo–Patel long–short domestic portfolios constrained by (4.3) with 

𝑙𝑒𝑣 = 0.10, whose price performance is shown in Fig. 4.4(b). Again, the values for the 

benchmarks and EQW are repeated to facilitate comparison. For consistency, we compare our 

results with the long-only portfolios of Fig. 4.19. For the Lo–Patel optimization, the range of 

extreme MDD outlier values is generally reduced, although the IQR ranges generally expand to 

larger MDD values. The SR and RR IQR ranges for the tangent portfolios contract to smaller 

values, while SS values improve slightly for the minimum-risk portfolios. 

Without displaying the graphs, we note that for the same portfolio, changing from daily 

rebalancing to rebalancing every two weeks does not noticeably change the box-whisker 

summaries of these four performance measures. Fig. 4.23 illustrates the impact of changing the 

turnover constraint. We compare the performance-measure box-whisker summaries for the long-

only portfolio with no turnover constraint and a turnover constraint of 𝐶TO = 0.004 (which 

corresponds to, at most, a 100% change in the portfolio weight composition each year). With the 

exception of TVP, the increased turnover constraint serves to even the performance among all the 

optimizations. TVP tends to retain the best performance measures under increasing turnover 

constraint. 
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Figure 4.23 Box-whisker summaries of the performance measures for the long-only domestic 

portfolio optimizations subject to no turnover constraint (top) and a 4% turnover constraint 

(bottom). 

 

4.4 Observations 

 

The prototype ETFs developed in this chapter are preliminary in significant ways. They have not 

been subjected to market forces. They have been conditioned upon a narrow subset of 

institutionally held REITs. Although we have included holding period and turnover constraints, 

we have not included other significant investing constraints: available budget, target return, risk 

factors, transaction size, cardinality (number of assets), volatility, tracking error, transaction costs, 

and in the case of short strategies, margin costs and asset availability through brokers.  

Given these critical caveats, the collective evidence, from the long-only portfolios and from 

the Jacobs et al. and Lo–Patel variations that allow for negative asset-allocation weights (short-

selling), shows encouraging performance, in terms of returns and risk measures, relative to 

common industry benchmarks for the overall stock market (S&P 500) and the REIT market. In 

particular, the asset allocations for the top-performing indices that maximize the SR (TVP, T95, 

and T99) not only outperform the benchmarks but also reflect recent market-cycle trends in various 

property sectors over the past few years, including 

• outperformance by select infrastructure and specialty REITs (AMT and SBA); 

• higher uncertainty (volatility) for healthcare and retail REITs (HCP and VTR) relative to other 

property sectors due to disruptions in insurance markets; and 

▪ a significant paradigm shift in retail-anchored, big-box, and mall REIT sectors (REG, MAC, 

O, and SPG) and in the industrial REIT sector (PLD and DRE) due to the rapid growth of the 

online retail market (Amazon). 

Advanced techniques are required to form a better understanding of the dynamic causal 

relationships between complex underlying market forces and the aforementioned REIT market 
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trends and their manifestation as optimal portfolio weight allocations and subsequent returns. 

These techniques are discussed in subsequent chapters. 
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Chapter 5 
Diversification with International REITs 

 

Domestic investors can benefit from the addition of foreign securities to their investment portfolios 

when such an addition is beneficial from a risk-diversification standpoint. Eun and Resnick (1994) 

and Solnik (1995) find that risk reduction is possible when foreign securities are added to a 

diversified U.S. equity portfolio. Li et al. (2003) confirm that diversification benefits exist even in 

the presence of short-selling constraints. Eun et al. (2010) show that an augmented optimal 

portfolio that includes local-factor funds substantially outperforms a benchmark optimal portfolio 

that consists of only country-market indices. 

We explore the impact of diversification by adding the international REITs described in section 

2.2 into the domestic portfolio, producing a “global” portfolio. In section 5.1, we consider the 

performance of the international REITs alone, in their own portfolio (the “international” portfolio). 

In section 5.2, we consider the performance of the global portfolio. We explore performance in the 

context of the strategies covered in section 4.1. Because the available-price data period is shorter 

for the international REITs, in computing optimized weights for the international and global 

portfolios, we employ a rolling window of 1,008 trading days. Therefore, optimized portfolios are 

computed for the time period 04/30/2018 through 12/18/2020. A further consequence of the 

shortened period is that risk-measure computations in this chapter are performed using a 63-day 

(one financial quarter) rolling window. To compare the performance of the international and global 

portfolios with that of the domestic portfolio, we rerun the domestic portfolio optimizations of 

section 4.1 for this restricted time period. The performance of the rerun domestic portfolios is 

presented in section 5.2 and compared with that of the global portfolios.  

 

5.1 International Portfolio Performance 

 

5.1.1 Long-Only International Portfolios 

 

We first consider the turnover data for the long-only international portfolio optimizations run 

with no constraint on daily turnover. Fig. 5.1(a) shows the TO time series for each optimized 

portfolio, and Fig 5.1(b) provides the box-whisker summary of the TO and 𝐿2-norm distributions. 

Turnover is smallest for MVP, for which the largest turnover is correlated with the pandemic onset. 

For M95, TO history is similar, though turnover is slightly larger. For M99, the scale of turnover 

outliers roughly doubles (compared to MVP and M95), though the IQR for M99 is less than that 

for M95. It is striking how relatively small M99 turnover is for the final three quarters of 2020. 

For the tangent portfolios, turnover rates are larger than those for the corresponding risk-

minimizing portfolio and exhibit a much weaker correlation with the onset of the pandemic. 

Although T99 has larger outlier turnover values than T95, its IQR is virtually identical to that of 

T95. 

This data shows that the imposition of a turnover constraint 𝐶TO = 0.04 will affect only large 

outlier values for the minimum-risk portfolios and some of the upper-whisker range and outlier 

values for the tangent portfolios. Consequently (plots not shown), there are no significant 

differences between the performance of the long-only international portfolios optimized with no 
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turnover constraint and those with 𝐶TO = 0.04. Thus, we consider only the long-only 

optimizations with a 4% daily turnover constraint. Fig. 5.2 shows the box-whisker TO and 𝐿2-

norm summary statistics when the optimizations are run with 𝐶TO = 0.04. Although the y-axis 

scales are different from those in Fig. 5.1(b), close examination confirms that only outlier and 

upper-whisker values are affected. 

 

 

 

 

(a) (b) 

Figure 5.1 (a) Time series of turnover values (4.5) and (b) box-whisker summary statistics of TO 

and the 𝐿2-norm for the long-only international portfolio optimizations subject to no turnover 

constraint. 

 

 
Figure 5.2 Box-whisker summary statistics of TO and the 𝐿2-norm for the long-only international 

portfolio optimizations subject to a 4% turnover constraint. 

 

Fig. 5.3 displays the cumulative price and log-return performance for these portfolios. The 

downturn at the start of the pandemic divides the performance of these portfolios. Prior to the 

pandemic, all the optimized portfolios generally move in concert with the benchmark ETF VNQ. 

In addition, the tangent portfolios equal or outperform WD, the (higher-performing) benchmark 
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index. Interestingly, the equal-weighted portfolio of international REITs underperforms all others. 

This contrasts strongly with the performance of the equal-weighted portfolio of domestic REITs, 

which outperforms the minimum-risk domestic portfolio optimizations (see Fig. 4.9). Subsequent 

to the pandemic downturn, the benchmarks are the better price/return performers. 

 

  
Figure 5.3 Cumulative price (left) and log-return (right) for the long-only international portfolio 

optimizations subject to a 4% turnover constraint compared to those for the benchmarks. 

 

Fig. 5.4 presents the MDD, SR, SS, and RR time series for the benchmarks WD and VNQ and 

for the equal-weighted international portfolio EQW. Because these are calculated over a shorter 

moving window, they provide a more detailed picture of the changes of these risk measures over 

the time period 07/30/2018 through 12/18/2020 than do the series shown in Fig. 4.17. Losing 50% 

of its value, the EQW portfolio has the largest drawdown as a result of the pandemic and displays 

the largest decrease in SR, SS, and RR values at the onset of the pandemic. EQW exhibits two 

periods of very strong RR performance. All the risk-measure profiles for the benchmarks WD and 

VNQ are very similar; they incurred ~42% drawdown as a result of the pandemic. Both 

benchmarks show a consistent spike in SR, SS, and RR values around the end of the first quarter 

of 2019.  

 

  

  

Figure 5.4 MDD, SR, SS, and RR time series (quarter-year moving window) for WD, VNQ, and 

EQW. 

 

Fig. 5.5 presents the risk-measure time series for the long-only optimized international 

portfolios. Compared to the benchmarks and minimum-risk optimizations, the tangent 

optimizations suffer smaller MDD values as a result of the pandemic. Generally, the tangent 

portfolios outperform the minimum-risk portfolios in SR, SS, and RR prior to the start of the 
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pandemic, and this situation is reversed during the pandemic. For comparison with the 

performance of the benchmarks, we consider the box-whisker summaries in Fig. 5.6. Among the 

benchmarks and the optimized portfolios, the best MDD statistics belong to SPY and M95, 

respectively. SPY has the best SR and SS statistics, and all the optimized portfolios are very 

comparable with each other in terms of these two variables. However, with respect to RR, the 

tangent portfolios perform the best. 

 

  
 

 
Figure 5.5 MDD, SR, SS, and RR time series (quarter-year moving window) for the long-only 

international portfolio optimizations. 

 

  

  
Figure 5.6 Box-whisker summaries of the statistics of the performance measures for the 

benchmarks identified in section 2.3 and the long-only international portfolio optimizations subject 

to a 4% turnover constraint. 

 

Fig. 5.7 depicts the overall risk measures computed for the period 07/30/2018 through 

12/18/2020. In terms of overall values, SPY, TVP, and T95 have the smallest drawdown, whereas 

SPY and the tangent portfolios have the best SS values. SPY has the best overall SR. Overall SR 

values are negative for the minimum-risk portfolios; only TVP and T95 have SR values 
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competitive with those of the benchmarks. EQW has the best RR, and only M99 and T99 have 

overall RR values strongly competitive with those of the benchmarks. 

 

  
Figure 5.7 Performance measure values computed for the time period 07/30/2018 through 

12/18/2020 for the benchmarks identified in section 2.3 and the long-only international portfolio 

optimizations subject to a 4% turnover constraint. 

 

5.1.2 Jacobs et al .  Long–Short International Portfolios 

 

To illustrate the performance of the international portfolio under Jacobs et al. long–short investing, 

we consider optimization with 𝑠 = 0.1 in (4.2) and a turnover constraint of 𝐶TO = 0.04. Fig. 5.8 

reveals that unlike long-only optimization (Fig. 5.3), these long–short optimizations exhibit a very 

strong separation of the cumulative price and log-return performance between the tangent and 

minimum-risk portfolios. In terms of MDD, the tangent portfolios are less impacted by the 

pandemic. 

 

  
Figure 5.8 Cumulative price (left) and log-return (right) for the Jacobs et al. long–short 

international portfolio optimizations constrained by (4.2) with 𝑠 = 0.1 and 𝐶TO = 0.04. 

 

Fig. 5.9 summarizes the TO and 𝐿2-norm statistics for these long–short portfolios. With the 

exception of MVP and T95, the IQR ranges are wider than for the long-only case (Fig. 5.2). The 

risk-measure time series are presented in Fig. 5.10; their box-whisker summaries are shown in Fig. 

5.11; and the overall time-period risk measures are illustrated in Fig. 5.12. MDD at the start of the 

pandemic is better for the long–short optimizations, particularly the tangent optimizations, than 
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for the long-only optimizations (Fig. 5.5). Differences between the long–short time series and box-

whisker plots and those between the long-only time series and box-whisker plots (Figs. 5.5 and 

5.6) are generally subtle. Clear differences are revealed by the overall time period values. Overall 

SRs (Fig. 11) are better for the long–short tangent portfolios than for the long-only ones (Fig. 5.7), 

but SR values for the minimum-risk portfolios, particularly M95, are worse. Overall, SS and RR 

values tend to be better for the long–short portfolios than for the corresponding long-only ones. 

 

  
Figure 5.9 Box-whisker summary statistics of TO and the 𝐿2-norm for the Jacobs et al. long–short 

international portfolio optimizations constrained by (4.2) with 𝑠 = 0.1 and 𝐶TO = 0.04. 

 

  

  
Figure 5.10 Risk-measure time series for the Jacobs et al. long–short international portfolio 

optimizations constrained by (4.2) with 𝑠 = 0.1 and 𝐶TO = 0.04. 
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Figure 5.11 Box-whisker summaries of the statistics of the performance measures for the 

benchmarks identified in section 2.3 and the Jacobs et al. long–short international portfolio 

optimizations constrained by (4.2) with 𝑠 = 0.1 and 𝐶TO = 0.04. 

 

  
Figure 5.12 Performance measure values computed for the time period 07/30/2018 through 

12/18/2020 for the benchmarks identified in section 2.3 and the Jacobs et al. long–short 

international portfolio optimizations constrained by (4.2) with 𝑠 = 0.1 and 𝐶TO = 0.04. 

 

5.1.3 Lo–Patel Long–Short International Portfolios 

 

Comparing Fig. 5.13 with Fig. 5.8 shows that Lo–Patel long–short optimization using 𝑙𝑒𝑣 = 0.1 

produces results very similar to those shown in section 5.1.2. (The tangent portfolio results for Lo–

Patel are slightly better.) Thus, graphs of TO and the risk-measure values for these optimized 

portfolios are not shown. 

 

  
Figure 5.13 Cumulative price (left) and log-return (right) for the Lo–Patel long–short international 
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portfolio optimizations constrained by (4.2) with 𝑙𝑒𝑣 = 0.1 and 𝐶TO = 0.04. 

 

 

5.2 Global Portfolio Performance 

 

The global portfolio consists of the 26 domestic REITs described in section 2.1 and the seven 

international REITs of section 2.2. As mentioned, the international REIT data is uniformly 

available over the time period 04/13/2014 through 12/18/2020, so we rerun computations on the 

domestic portfolio for this shorter time period to enable comparison of the effects of this 

diversification.  

 

5.2.1 Long-Only Global Portfolios 

 

Fig. 5.14 compares the cumulative price and log-return of the global and domestic portfolios under 

long-only optimization with a daily turnover constraint of 4%. The global portfolio exhibits better 

results prior to the onset of the pandemic. However, the domestic tangent portfolios TVP, T95, 

and T99 suffer less drawdown during the pandemic and outperform the global tangent portfolios 

after the pandemic. During the pandemic, the behavior of the minimum-risk global and domestic 

portfolios are roughly comparable, with evidence that the domestic portfolios are recovering better 

by January 2020. 

 

  

(a) Global 

  

(b) Domestic 

Figure 5.14 Cumulative price (left) and log-return (right) for the long-only (a) global and (b) 

domestic portfolio optimizations subject to a 4% turnover constraint. 
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Global Domestic 

Figure 5.15 Box-whisker summary statistics of TO values for the long-only global (left) and 

domestic (right) portfolio optimizations subject to a 4% turnover constraint. 

 

Fig. 5.15 compares the turnover statistics for the global and domestic portfolios over this time 

period. The domestic portfolios have larger IQRs, with generally higher median values (implying 

generally greater fee expenses).  

 

  

  

  

  
Figure 5.16 Risk-measure time series for the long-only global (left) and domestic (right) portfolio 

optimizations subject to a 4% turnover constraint. 

 

Fig. 5.16 compares the risk-measure time series for the global and domestic portfolios over the 

time period 07/30/2018 through 12/18/2020. The global portfolios generally have better MDD 

values. At any fixed time point, the SR, SS, and RR values for the domestic tangent portfolios are 

closer together than those for the global portfolios. Figs. 5.17–5.19 provide a more extensive 

comparison by presenting box-whisker summary statistics for the risk-measure values. Fig 5.17 
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shows the MDD statistics for the benchmarks and the global and domestic portfolios. Note that the 

EQW global portfolio (33 REITs) does not have the same asset composition as the EQW domestic 

portfolio (26 REITs). The MDD statistics for both the global and domestic optimized portfolios 

are better than their EQW counterparts and, with the exception of SPY, better than those for the 

benchmarks. MDD Q25, Q50, and Q7 values and whisker lengths are better for the global 

portfolios than for the domestic ones. 

Fig. 5.18 compares SR statistics for the benchmarks and the global and domestic portfolios. 

The Q25, Q50, and Q75 values are better for the benchmarks than for the global and domestic 

minimum-risk portfolios, but they are not competitive with those for the optimized tangent 

portfolios. The Q25, Q50, and Q75 values are uniformly higher for the global minimum-risk 

portfolios than for their domestic counterparts. The Q25 and Q50 quantile values for the domestic 

tangent portfolios are higher than for their global counterparts, but the situation is reversed for the 

Q75 values. Because the relative ranking of the portfolios with respect to SS values is the same as 

for SR values, the SS box-whisker summary plots are not shown. Fig. 5.19 shows the statistics for 

the RR values. The global portfolios outperform the benchmarks and the domestic portfolios. 

 

  
Benchmarks                                Global Domestic 

Figure 5.17 Box-whisker summary statistics of MDD values for the benchmarks and the long-

only global and domestic portfolio optimizations subject to a 4% turnover constraint. 

 

  
Benchmarks                                Global Domestic 

Figure 5.18 Box-whisker summary statistics of SR values for the benchmarks and the long-only 

global and domestic portfolio optimizations subject to a 4% turnover constraint. 
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Benchmarks                                Global Domestic 

Figure 5.19 Box-whisker summary statistics of RR values for the benchmarks and the long-only 

global and domestic portfolio optimizations subject to a 4% turnover constraint. 

 

  

  
Benchmarks                 Global Domestic 

Figure 5.20 Performance measure values computed measured for the time period 07/30/2018 

through 12/18/2020 for the benchmarks identified in section 2.3 and the long-only global and 

domestic portfolio optimizations subject to a 4% turnover constraint. 

 

Fig. 5.20 compares the overall values of the risk measures for the time period. In terms of total 

MDD, which is determined by the pandemic-related decline, the global tangent portfolios have the 
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smallest values, falling by 30%–31%, whereas the domestic tangent portfolio drops by 31%–32%. 

SPY declines by 34%, whereas all the minimum-risk portfolios and benchmarks experience 40%–

45% drops. All the minimum-risk portfolios have a negative total SR over this period, a 

consequence of adding the international REITs (see Figs. 4.20 and 5.7). SPY shows the best total 

SR value (0.038), followed by the tangent domestic portfolios (0.024–0.030). The tangent 

portfolios, both global and domestic, have the best total SS values, and the domestic tangent values 

(0.019) are better than the global ones (0.018). The domestic portfolios outperform their respective 

global portfolios in terms of total RR. In addition, the domestic tangent portfolios outperform all 

the benchmarks in terms of total RR. 

 

5.2.2 Jacobs et al. Long–Short Global Portfolios 

 

The effect of diversification on long–short portfolios calls for a brief discussion. We consider the 

Jacobs et al. optimization with 𝑠 = 0.1 under the turnover constraint 𝐶TO = 0.04. Fig. 5.21 

compares the cumulative price and log-return of the global and domestic portfolios. Paralleling the 

long-only case, the results are better for the global portfolios prior to the onset of the pandemic 

and continue to be better for the minimum-risk global portfolios during the pandemic. However, 

the domestic tangent portfolios perform best during the pandemic. 

 

  

(a) Global 

  

(b) Domestic 

Figure 5.21 Cumulative price (left) and log-return (right) for the Jacobs et al. long– (a) global and 

(b) domestic portfolio optimizations subject to the constraints 𝑠 = 0.1 and 𝐶TO = 0.04. 

 

Fig. 5.22 compares the total values of the risk measures. The global portfolios have better 

MDD values (by 6%–10%) than their domestic counterparts, and the global T99 portfolio shows 

the smallest MDD. The SRs continue to be negative for the minimum-risk portfolios; the tangent 
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global portfolios have the best SR values. SS values for the domestic and global portfolios are 

virtually identical, and all the tangent portfolios provide better SS values than the benchmarks. RR 

values for the domestic portfolios are better than their global counterparts, and the domestic 

tangent portfolios produce the best overall values. 

 

  

  
Benchmarks                Global Domestic 

Figure 5.22 Performance measure values computed for the time period 07/30/2018 through 

12/18/2020 for the benchmarks identified in section 2.3 and the Jacobs et al. long–short global and 

domestic portfolio optimizations subject to the constraints 𝑠 = 0.1 and 𝐶TO = 0.04. 
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Chapter 6 
Black–Litterman Optimization Results 

 

In this chapter, we apply the Black–Litterman optimization model, described in section 3.3, to our 

REIT portfolios. Because subjective views are specific to the market day and analyst, we run our 

Black–Litterman model on the portfolios without any specification of analyst views.59 Without 

analysis views, the view-related quantities P, Ω, and q are zero; from (3.46), we have 𝒓BL  = 𝝅  

with 𝚺BL = 𝑪 = τ𝚺; and the Black–Litterman model captures the added influence of the market 

portfolio. Thus, the primary outputs60 of the Black–Litterman module (equation (3.47)) are 𝝅 and 

(1 + τ)𝚺. We determine 𝝅 using (3.49), where the weights 𝒘∗ = 𝒘mkt are determined by a least-

squares linear regression of our historical61 asset returns to those of the market benchmark. We 

employ FRESX62 as the market benchmark. The SR value in the risk-aversion coefficient, 𝛾, in 

(3.50) is determined from the mean and standard deviation of the FRESX benchmark’s returns. 

 

6.1 Domestic Portfolios 

 

Because FRESX employs a long-only investment strategy, the Black–Litterman values of 𝝅 and 

(1 + τ)𝚺 are used as inputs into the MVP and TVP optimization routines employing a long-only 

investment strategy. The goal of the Black–Litterman method is to track a benchmark subject to 

analyst corrections, so we compare the results of the Black–Litterman optimized portfolio against 

the performance of FRESX. The MVP and TVP optimizations subjected to the Black–Litterman 

method are labeled “BL MVP” and “BL TVP.” Those without the Black–Litterman method are 

labeled simply “MVP” and “TVP,” as in previous chapters. Fig. 6.1 shows the turnover time series 

for BL MVP, BL TVP, MVP, and TVP run with no turnover constraint. The time series for BL 

MVP and MVP are remarkably similar. Strong turnover differences between BL TVP and TVP 

reflect the impact the Black–Litterman scheme has on TVP optimization. 

 

 
 

Figure 6.1 Turnover time series for the BL MVP and BL TVP (left) and MVP and TVP (right) 

long-only domestic portfolio optimizations. No turnover constraint is imposed on these 

optimizations. 

 

Fig. 6.2 shows the influence of changing turnover constraints on the cumulative price of BL 

MVP and BL TVP run on the domestic portfolio. These are compared to the results for running 

 
59 Once expert views of the market are specified, they can be added into the simulation. 
60 In each rolling window; see section 3.4. 
61 The regression is performed in each rolling window; see section 3.4. 
62 The fund seeks above-average income and long-term capital growth, and it targets yield that exceeds the composite 

yield of the S&P 500. See https://finance.yahoo.com/quote/FRESX/. 

https://finance.yahoo.com/quote/FRESX/
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the long-only optimizations MVP and TVP (without the Black–Litterman method). The 

performance of the minimum-risk portfolios, MVP and BL MVP, is relatively unchanged both 

with and without the Black–Litterman method and under changing TO constraints. It tends to 

underperform FRESX through most of the period but recovers to match FRESX during the 

pandemic. The tangent optimization shows much greater sensitivity. TVP greatly outperforms 

FRESX and shows strong price improvement when 𝐶TO is decreased to 0.004 (100% possible 

turnover in the portfolio weights in one year). The Black–Litterman method strongly controls the 

performance of BL TVP. With no turnover constraint, BL TVP outperforms FRESX, though not 

to the extent that TVP does. Under 𝐶TO = 0.04, BL TVP tracks FRESX in terms of price 

performance. Reducing to 𝐶TO = 0.004, BL TVP again outperforms FRESX, though not as 

strongly as it does in the absence of a turnover constraint.  

  
(a) 𝐶TO = ∞ 

  
(b) 𝐶TO = 0.04 

  
(c) 𝐶TO = 0.004 

Figure 6.2 Cumulative price for the MVP and TVP long-only domestic portfolio optimizations 

with (left) and without (right) the Black–Litterman scheme under different levels of turnover 

constraint: (a) 𝐶TO = ∞ (no constraint), (b) 𝐶TO = 0.04, and (c) 𝐶TO = 0.004. Price performance 

is compared to that of the market benchmark FRESX. 

 

Fig. 6.3 compares risk-measure time series for BL MVP, BL TVP, MVP, and TVP when 𝐶TO =
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0.004. BL MVP and MVP time series of all four risk measures are essentially the same, as can be 

seen in Fig. 6.4, which summarizes the box-whisker statistics of the risk measures. In contrast, BL 

TVP tracks FRESX in SR, SS, and RR much better than BL MVP and clearly much better than 

TVP. Fig. 6.4 shows how the risk-measure box-whisker summaries for SR, SS, and RR are brought 

into closer alignment with those for FRESX. Interestingly, the same is not true for MDD. 

 

  

  

  

  
Figure 6.3 Risk-measure time series for the BL MVP and BL TVP (left) and MVP and TVP (right) 

long-only domestic portfolio optimizaitons subject to a 0.4% turnover constraint. 
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Figure 6.4 Box-whisker summaries of the risk measures for FRESX and the BL MVP and BL 

TVP (top) and MVP and TVP (bottom) long-only domestic portfolios optimized subject to a 0.4% 

turnover constraint. 

 

  

Figure 6.5 Performance measure values computed for the time period 12/16/2008 through 

12/18/2020 for FRESX and the BL MVP and BL TVP (left) and MVP and TVP (right) long-only 

domestic portfolio optimizations subject to a 0.4% turnover constraint. 

 

Fig. 6.5 compares the risk measures computed for the total time period for FRESX, BL MVP, BL 

TVP, MVP, and TVP. The overall risk measures for BL MVP and MVP are the same; both have 

the best MDD value but the worst values for overall SR and RR. TVP has the best SR, SS, and RR 

values. The effect of the Black–Litterman scheme is to align the overall value of every risk measure 

more closely to that of FRESX. As a result, although BL TVP still retains better SR, SS, and RR 

values than BL MVP and FRESX, BL TVP develops the worst overall MDD value. 

 

6.2 Global Portfolios 

 

We investigate the combined effect of diversification by adding the international assets and 

imposing the Black–Litterman method. As noted in Chapter 5, the time period for portfolio 

optimizations is reduced to 04/30/2018 through 12/18/2020, and risk-measure statistics cover the 

period 07/30/2018 through 12/18/2020. As in section 6.l, we use FRESX as the market benchmark 

and consider long-only optimization under the turnover constraint 𝐶TO = 0.004. Fig. 6.6 compares 

the performance of MVP and TVP optimizations for the domestic and global portfolios with and 

without the application of the Black–Litterman scheme. Starting with the MVP and TVP 

optimizations of the domestic long-only portfolios (Fig. 6.6(a)), it is evident that adding the 

international REITs worsens the price performance of TVP and slightly improves that of MVP 

(Fig. 6.6(b)). Applying the Black–Litterman method without diversification (Fig. 6.6(c)) 

dramatically worsens the performance of TVP, aligning it strongly with FRESX, but does not 

markedly change the performance of MVP. Combining diversification and the Black–Litterman 

method (Fig. 6.6(d)) results in strong alignment of the optimization schemes both to each other 

and to FRESX prior to the pandemic. During the pandemic, the performance of BL MVP and BL 

TVP once again begins to approach that of FRESX near the end of 2020. 

Fig. 6.7 explores the effects of diversification and the Black–Litterman method on MDD. 

Diversification alone generally reduces MDD for MVP. The addition of the Black–Litterman 

method does not affect MDD statistics for MVP but generally increases MDD for TVP. Fig. 6.7 

also explores the effects of diversification and the Black–Litterman method on SR. Diversification 
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tends to slightly increase the SR values for MVP, whereas the addition of the Black–Litterman 

method has a weaker effect. Diversification has less influence on the SR values for TVP, whereas 

the addition of the Black–Litterman scheme reduces TVP SR values. For brevity, the effects on 

SS and RR are not shown. The effects on SS are similar to those on SR. Diversification tends to 

increase RR for both MVP and TVP. Adding the Black–Litterman scheme tends to have little 

effect on MVP and generally reduces RR for TVP. 

 

  
(a) Domestic, no Black–Litterman (b) Global, no Black–Litterman 

  
(c) Domestic with Black–Litterman (d) Global with Black–Litterman 

Figure 6.6 Cumulative price for the MVP, TVP, BL MVP, and BL TVP long-only domestic and 

global portfolio optimizations subject to a 0.4% turnover constraint. Price performance is 

compared to that of the market benchmark FRESX. 
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(a) Domestic, no 

Black–Litterman 

(b) Global, no 

Black–Litterman 

(c) Domestic with 

Black–Litterman 

(d) Global with 

Black–Litterman 

Figure 6.7 Box-whisker summary of MDD (top) and SR (bottom) statistics for FRESX and the 

MVP, TVP, BL MVP, and BL TVP long-only domestic and global portfolio optimizations 

subject to a 0.4% turnover constraint. 

 

Fig. 6.8 summarizes the total-time-period risk-measure values. The Black–Litterman method 

of alignment with the market portfolio FRESX dramatically worsens the total-risk-measure values 

for TVP, whereas the impact on MVP values is slight. 

 

 

 
 

(a) Domestic, no Black–Litterman (b) Global, no Black–Litterman 

  
(c) Domestic with Black–Litterman (d) Global with Black–Litterman 

Figure 6.8 Performance measure values computed for the time period 07/30/2018 through 

12/18/2020 for FRESX and the BL MVP and BL TVP (left) and MVP and TVP (right) long-only 

domestic and global portfolio optimizations subject to a 0.4% turnover constraint.
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Chapter 7  
Dynamic Portfolio Optimization: Beyond MPT 

 

The historical optimization method discussed in section 3.4 and illustrated in Chapters 4–6 samples 

return data sequentially by moving windows from a fixed historical period containing a finite 

sample of market activity and world events. As is usually noted in any fund prospectus, past 

performance may not be indicative of future returns. Rather than simply using the samples of 

historical asset returns, dynamic optimization expands on the informational content measurable 

from the historical data. Specifically, the historical returns are assumed to come from a dynamic 

multivariate distribution (dynamic in the sense that its moments, such as the covariance, may change over 

time), of which the historical returns are a representative but limited sample. Dynamic optimization attempts 

to discover the character of this distribution and then to generate very large predictive samples of correlated 

asset returns that sample much more of the tail behavior (i.e., extreme events) of the distribution. The result 

is a portfolio optimization that is more “attuned” to possible dramatic changes in market performance. 

The form of dynamic optimization we implement here contains the following elements. In each moving 

window, a very general ARMA(1,1)–GARCH(1,1) model is used to fit the return data. A Student’s 𝑡-
distribution, which allows for fatter tails than a normal distribution, is utilized as the model for the innovations 

in the ARMA−GARCH fit. More inventively, the innovations from the fit are empirically transformed into 

copula “space.” Under a copula transformation, all regions of the distribution, including tail regions, are 

given equal weighting. The copula-transformed innovations are fit to a multivariate 𝑡-copula distribution, 

which captures the covariance behavior among the asset innovations. A very large sample of asset-

innovation values is then generated from the 𝑡-copula distribution. After applying inverse copula 

transformations to the sample set, these innovations are utilized in the ARMA−GARCH fit to generate a 

very large set of portfolio asset-return values, which are fed into the optimization routine to generate the next-

day weights for the portfolio. 

We discuss the individual steps of this optimization in greater detail in sections 7.1.1–7.1.3. In 

section 7.1.4, we describe the method for combining dynamic optimization with the Black–

Litterman method. In section 7.2, we illustrate dynamic long-only and long–short optimization of 

the domestic, international, and global portfolios. In section 7.3, we illustrate the combination of 

the Black–Litterman method with dynamic optimization of the long-only domestic portfolio. 

 

7.1 Dynamic Optimization 

 

Consider the mean-variance optimization method of section 3.1. As diagrammed in Fig. 3.3, it 

requires 𝑛 + 𝑛(𝑛 + 1) 2⁄ = 𝑛(𝑛 + 3) 2⁄  input values, consisting of the entries of the vector �̅� of 

mean returns and the entries of the diagonal covariance matrix 𝚺. Consider a moving window of 

𝑇 days. It contains 𝑛𝑇 asset-return values, 𝑟𝑖,𝑡. Thus, whereas �̅�𝑖 = 𝑇−1∑ 𝑟𝑖,𝑡
𝑇
𝑡=1  provides an 

estimate for �̅�𝑖 with an error ~𝑇−1/2, estimates of Σ𝑖𝑗 = ∑ (𝑟𝑖,𝑡 − �̅�𝑖)
𝑇
𝑡=1 (𝑟𝑗,𝑡 − �̅�𝑗) exhibit a higher 

degree of error, because the same set of 𝑇 values for (𝑟𝑖,𝑡 − �̅�𝑖) is used to compute the values for 

Σ𝑖𝑗, 𝑗 = 1,… , 𝑛, 𝑗 ≠ 𝑖. Because this observation holds for each asset i, a restricted set of 

independent observations goes into the computation of 𝚺. Stated equivalently, for any practically 

sized moving window, there is the potential for insufficient sampling of the (range of) covariances 
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experienced between the assets. Dynamic optimization seeks to provide a statistically accurate 

large sampling. We do so in a manner that combines a historical window [𝑡 − 𝑇 + 1, 𝑡] of return 

data with a dynamic prediction of returns for day 𝑡 + 1 to feed into an optimization for the weights 

on day 𝑡 + 1.  

 

7.1.1 ARMA(1,1)–GARCH(1,1) with Student’s t-Distribution 

 

If a time series, 𝑟𝑡, of returns is stationary, a useful general model for describing the time series is 

the synthesis of the autoregressive moving-average (ARMA) model and the generalized 

autoregressive conditional heteroscedasticity (GARCH) model. The ARMA (Engel, 1982) 

component explicitly models the behavior of the return, whereas the GARCH (Bollersley, 1986) 

component explicitly models its variance. Both models contain (theoretically infinite) parameters; 

the variations in the models are denoted by the (finite) number of parameters employed. The 

ARMA(𝑝, 𝑞) model (Tsay, 2010) is 

𝑟𝑡 = 𝜑0 +∑𝜑𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

+ 𝑎𝑡 +∑𝜃𝑗𝑎𝑗−1

𝑞

𝑗=1

 , (7.1) 

where each shock, 𝑎𝑡, is a zero-mean random variable. The first two terms in (7.1) describe the 

autoregressive dependence of 𝑟𝑡 on previous returns; the second two terms add the influence of a 

weighted (moving) average of shocks, 𝑎𝑡. The GARCH(𝑚, 𝑠) model relates 𝑎𝑡 to, and provides a 

model for, the variance 𝜎𝑡
2 of the series 

𝑎𝑡 = 𝜎𝑡𝜖𝑡, 𝜎𝑡
2 = 𝛼0 +∑𝛼𝑖 𝑎𝑡−1

2

𝑚

𝑖=1

+∑𝛽𝑗𝜎𝑡−1
2

𝑞

𝑗=1

 . (7.2) 

Here, the so-called innovations, 𝜖𝑡, are zero-mean, unit-variance, independent, identically 

distributed random variables. The GARCH model is clearly autoregressive in both 𝜎𝑡
2 and 𝑎𝑡

.2. 

Identifying the daily variance as the volatility of the time series, (7.2) captures the property of 

conditional heteroscedasticity, that is, the property that the volatility is nonconstant relative to that 

of prior days. 

With six parameters, the ARMA(1,1)–GARCH(1,1) model, 

𝑟𝑡 = 𝜑0 + 𝜑1𝑟𝑡−𝑖 + 𝑎𝑡 + 𝜃1𝑎𝑡−1 ,
𝑎𝑡 = 𝜎𝑡𝜖𝑡 ,

𝜎𝑡
2 = 𝛼0 + 𝛼1 𝑎𝑡−1

2 + 𝛽1𝜎𝑡−1
2  ,

 (7.3) 

provides enough generality to model many return time series.63 However, providing a fit to a 

particular time series requires the specification of the distribution governing the innovation random 

variables. In the dynamic optimization method, we assume that the innovations, 𝜖𝑡, are governed 

by the Student’s 𝑡-distribution, 

 
63 To be sure, there are variations of the GARCH model (Bollersley, 1986) designed to include additional behaviors. 

Some examples are the I(ntegrated)GARCH (Engel and Bollersley, 1986); F(ractionally)I(ntegrated)GARCH (Baillie 

et al. 1996); E(xponential)GARCH (Nelson 1991); GARCH-M(ean) (Engel et al., 1986); T(hreshold)GARCH 

(Zakoian, 1994); and G(losten)J(agannathan)R(unkle)GARCH (Glosten et al., 1993) models. 
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𝑡𝑣(𝑥) =
Γ((1 + 𝜈)/2)

√𝜈𝜋 Γ(𝜈/2)
(1 +

𝑥2

𝜈
)

−(1+𝜈) 2⁄

 , (7.4) 

where Γ() is the gamma function. This distribution is symmetric, but it is fat-tailed relative to the 

normal distribution. The parameter 𝜈 is known as the number of degrees of freedom. The 

distribution has finite variance for 𝜈 > 2, zero skewness for 𝜈 > 3, and finite kurtosis for 𝜈 > 4. 

Otherwise, these moments are either infinite or undefined. As 𝜈 → ∞, the Student’s 𝑡-distribution 

approaches the normal distribution. (In practice, the normal distribution is a sufficiently accurate 

approximation when 𝜈 ≥ 30.) 

 

7.1.2 Multivariate t-Distribution and t-Copulas 

 

The Student’s 𝑡-distribution (7.4) is applicable to univariate random variables. The extension to 

random vectors, whose elements are random values that may be correlated, is the multivariate 

Student’s 𝑡-distribution. Although there are many candidates for the multivariate generalization of 

the Student’s 𝑡-distribution, we utilize the common form 

𝑡𝑣(𝒙; 𝝁, 𝚺) =
Γ (
𝑝 + 𝜈
2 )

(𝜈𝜋)𝑝 2⁄  Γ (
𝜈
2)
|𝚺|1 2⁄

(1 +
(𝒙 − 𝝁)𝑇𝚺−1(𝒙 − 𝝁)

𝜈
)

−(𝑝+𝜈) 2⁄

. (7.5) 

Here, 𝒙 is a 𝑝-dimensional random vector having mean 𝝁 (for > 1). (Because the distribution is 

symmetric, 𝝁 is also the median and mode values of the distribution.) The 𝑝 × 𝑝 matrix 𝚺 is 

proportional to the covariance matrix of the elements of 𝒙; specifically, the covariance is 

𝜈 (𝜈 − 2)⁄ 𝚺 for 𝜈 > 2. The notation |𝚺| denotes the determinant of 𝚺. The parameters of the model 

are 𝚺, 𝝁, and 𝜈. An attractive feature of this version of the multivariate 𝑡-distribution is that 𝜈 

continues to be a scalar measure of the degrees of freedom.64 

The CDF for this multivariate distribution, 

T𝑣(𝒚) = Pr(𝑿 ≤ 𝒚)   where   𝑿~𝑡𝑣(𝒙; 𝝁, 𝚺) , (7.6) 

does not have an analytic form but can be approximated using numerical integration. 

 As noted in section 10.1.3.1, the copula is a multivariate cumulative distribution function. 

From (7.6), the 𝑡-copula is the multivariate cumulative distribution given by 

𝐶𝑣
𝑡(𝑢1, … , 𝑢𝑁) = T𝑣(𝑡𝑣

−1(𝑢1), … , 𝑡𝑣
−1(𝑢𝑁) ) , (7.7) 

where 𝑡𝑣
−1 is the inverse of the Student’s 𝑡-distribution (7.4). 

 

7.1.3 Generation of Dynamic Returns 

 

 
64 In practice, 𝚺 and 𝝁 are estimated from sample data. Thus, fitting the distribution 𝑡𝑣(𝒙; 𝝁, 𝚺) to a sample of 

multivariate data reduces to finding a best-fit value for 𝜈. 
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As illustrated by the schematic in Fig. 7.1, dynamic optimization introduces an additional module 

that converts a window of historical returns into a dynamic set of returns that are then passed to 

the portfolio-optimizing routine. 

 

 
Figure 7.1. Schematic of dynamic portfolio optimization. 

 

As noted in the introduction to this section, the dynamic module seeks to provide a statistically 

accurate larger sampling of returns for subsequent optimization. This is achieved by the following 

steps. 

S1. Let {𝑟𝑖,𝑡−𝑇+1, … , 𝑟𝑖,𝑡} denote the historical return series for asset 𝑖, 𝑖 = 1,… , 𝑛 in the window 

[𝑡 − 𝑇 + 1, 𝑡]. Fit an ARMA(1,1)–GARCH(1,1)–Student’s 𝑡-distribution model to the time 

series of each asset, generating the parameters 𝜑0,𝑖, 𝜑1,𝑖, 𝜃1,𝑖, 𝛼0,𝑖, 𝛼1,𝑖, 𝛽1,𝑖, 𝜈𝑖 ,    𝑖 =

1, … , 𝑛. 

S2. Compute the shock series {𝑎𝑖,𝑡−𝑇+1, … , 𝑎𝑖,𝑡} as the difference between the historical time series 

{𝑟𝑖,𝑡−𝑇+1, … , 𝑟𝑖,𝑡} and the values predicted by the ARMA(1,1) model in (7.3). From the shock 

series and the variances 𝜎𝑘
2, 𝑘 = 𝑡 − 𝑇 + 1, … , 𝑡, predicted from the fitted GARCH(1,1) model 

in (7.3), compute the innovation series {𝜀𝑖,𝑡−𝑇+1, … , 𝜀𝑖,𝑡}, 𝑖 = 1,… , 𝑛. 

S3. Recall that the innovations have been fit to a Student’s 𝑡-distribution in step S1. Perform the 

copula transformations, 𝑢𝑖,𝑡−𝑇+1, … , 𝑢𝑖,𝑡 = 𝜏𝑣𝑖(𝜀𝑖,𝑡−𝑇+1, … , 𝜀𝑖,𝑡), where 𝜏𝜈 is the CDF for the 

univariate Student’s 𝑡-distribution (7.5). 

S4. Fit the transformed innovations {𝑢𝑖,𝑡−𝑇+1, … , 𝑢𝑖,𝑡}, 𝑖 = 1,… , 𝑛 to a 𝑡-copula (7.7) using an 

objective function that approximates the log-likelihood for the degrees-of-freedom parameter, 

𝜈, of the multivariate 𝑡-distribution. 

S5. Generate 𝑆 × 𝑛 correlated samples, {𝑢𝑖,1, … , 𝑢𝑖,𝑆}, 𝑖 = 1,… , 𝑛  from the 𝑡-copula, where 𝑆 ≫

𝑇. (Recall that 𝑇 is the size of the historical window.) 

S6. Perform the inverse transformations 𝜀𝑖,1, … , 𝜀𝑖,𝑆 = 𝜏𝜈𝑖
−1(𝑢𝑖,1, … , 𝑢𝑖,𝑆), 𝑖 = 1,… , 𝑛. 
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S7. Use these transformed, correlated innovations in the ARMA(1,1)–GARCH(1,1) model of step 

S1 to generate a dynamic ensemble {𝑟𝑖,𝑠,𝑡+1, 𝑠 = 1,… , 𝑆 } of  𝑆 predicted returns for each asset 

𝑖 for day 𝑡 + 1: 

𝜎𝑖,𝑡+1
2 = 𝛼0 + 𝛼1 𝑎𝑖,𝑡

2 + 𝛽1𝜎𝑖,𝑡
2  ,

𝑎𝑖,𝑠,𝑡+1 = 𝜎𝑖,𝑡+1𝜖𝑖,𝑠 ,

𝑟𝑖,𝑠,𝑡+1 = 𝜑0 + 𝜑1𝑟𝑖,𝑡 + 𝑎𝑖,𝑠,𝑡+1 + 𝜃1𝑎𝑖,𝑡 

𝑠 = 1,… , 𝑆;    𝑖 = 1,… , 𝑛 .
,

 (7.8) 

The values 𝜎𝑖,𝑡 and 𝜎𝑖,𝑡 used in (7.8) are generated in step S2. 

The ensemble of returns {𝑟𝑖,𝑠,𝑡+1, 𝑠 = 1,… , 𝑆; 𝑖 = 1,… , 𝑛 } represents the output from the 

dynamic module, which is then fed to the portfolio optimizer, as illustrated in Fig. 7.1. The CVaR-

based optimizations require the entire ensemble of return values, {𝑟𝑖,𝑠,𝑡+1, 𝑠 = 1,… , 𝑆; 𝑖 =

1, … , 𝑛 }, whereas the mean-variance optimizations require only the mean return of each asset and 

the covariance matrix computed from this ensemble. The goals of the dynamic formulation 

outlined in the introduction to this section are therefore accomplished as follows. The ARMA(1,1)–

GARCH(1,1)–Student’s 𝑡-distribution model in step S1 facilitates the extraction (step S2) of the 

set of zero-mean, unit-variance, random innovations that characterize the behavior of the 

(correlated) asset returns over the historical window [𝑡 − 𝑇 + 1, 𝑡]. As noted in section 7.2.2.1, 

mapping the innovations to copula space (step S3) preserves the correlation behavior while 

weighting tail events with larger probability. Because tail information is precisely the area where 

samples are lacking in the historical window data set, transforming to copula-space enables better 

sampling of the tails of the innovation distribution. This is accomplished in steps S4–S6. The effect 

of steps S3–S6 is to take a 𝑇 × 𝑛 sample set of innovations and replace it with a much larger 𝑆 × 𝑛 

sample that retains the same statistical distribution. The final, notable idea in step S7 is to use the 

ARMA(1,1)–GARCH(1,1) model to generate a large ensemble of predicted return values for day 

𝑡 + 1 that is fed into the portfolio optimizer to generate optimal weight for use during day 𝑡 + 1. 

 

7.1.4 Combining the Dynamic Approach with Black–Litterman Optimization 

 

Fig. 7.2 illustrates the modification of Fig. 7.1 used to combine the dynamic approach with the 

Black–Litterman optimization. The Black–Litterman optimization outlined in equations (3.36)–

(3.50) in section 3.6 requires 𝝅 and 𝚺 (in addition to the managerial-team views) as input. In the 

historical optimizations presented in section 3.6, 𝚺 is estimated from the 𝑛 × 𝑇  returns in the 

historical window [𝑡 − 𝑇 + 1, 𝑡]. Similarly, the market weights required for computing 𝝅 from 

(3.49) are obtained by linearly regressing 𝑛 × 𝑇 returns against returns (covering the same time 

period) from a market benchmark. Under the dynamic approach, the dynamic return ensemble 

{𝑟𝑖,𝑠,𝑡+1, 𝑠 = 1, … , 𝑆; 𝑖 = 1,… , 𝑛 } does not correlate with any historical returns from a 

benchmark. This problem is solved by including the returns of the market benchmark as an 𝑛 +

1st asset in step S1 and performing the entire series S1–S7 for these 𝑛 + 1 assets. The result is an 

(𝑛 + 1) × 𝑆  data set of returns. The 𝑛 × 𝑆 ensemble of returns for the portfolio assets can then be 

linearly regressed against the corresponding 𝑆 ensemble of returns for the benchmark to generate 
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the weights, 𝒘mkt, of the market portfolio. The ensemble benchmark returns and 𝒘mkt are used in 

the computation of the risk-aversion coefficient 𝛾 in (3.50). 

The second important change is that the values of the correlation matrix, 𝚺, appearing in 

(3.36)–(3.50) are now computed from the 𝑛 × 𝑆 ensemble of asset returns. 

 

 
Figure 7.2. Schematic of the implementation of the Black–Litterman approach with dynamic 

portfolio optimization. 

 

7.2 Portfolio Optimization Using Dynamic Returns 

 

We consider the impact that the dynamic returns presented in section 7.1 have on the optimized 

portfolios examined in Chapters 4–6. We first consider dynamic optimization without the addition 

of the Black–Litterman scheme (Fig. 7.1).  

 

7.2.1 Dynamic Long-Only Portfolios 

 

Fig. 7.3 shows the cumulative price and log-return of the six MPT-based long-only domestic 

portfolios computed with dynamic optimization subject to no turnover constraint (𝐶TO = ∞) and 

to a 4% daily constraint (𝐶TO = 0.04). The price and return plots for the corresponding historical 

(nondynamic) optimizations are given in Figs. 4.1 and 4.9. Compared with the historical 

optimizations of Fig. 4.1, the prepandemic performance of all portfolios is enhanced, especially 

the performance of the tangent portfolios, which develop strong returns in the period 2014–2016, 

roughly double that of their historical counterparts during this period. This 2014–2016 behavior is 

reminiscent of, though much more pronounced than, that of the long–short historical portfolios of 

Figs. 4.4, 4.6, and 4.15. However, during the pandemic, the dynamic tangent portfolios suffer 

greater drawdowns than their historical counterparts. Under a 4% daily turnover constraint, the 

dynamic tangent portfolios significantly outperform their historical counterparts both before and 

during the pandemic, although the 2014–2016 performance enhancement is replaced by one of 

steady growth. Under the 4% turnover constraint, the dynamic minimum-risk portfolios do not 
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keep up with their historical counterparts, though their performance still equals or exceeds that of 

VNQ. 

 

  
𝐶TO = ∞ 

  
𝐶TO = 0.04 

Figure 7.3 Cumulative price (left) and log-return (right) for the benchmarks and the dynamic long-

only domestic portfolio optimizations subject to no turnover constraint (top) and a 4% turnover 

constraint (bottom). 

 

 

a 

 

  
(a) 𝐶TO = ∞ (b) 𝐶TO = 0.04 

Figure 7.4 MDD time-series and box-whisker statistics (computed from one-year moving 

windows) for the dynamic long-only portfolio optimizations subject to (a) no turnover constraint 

and (b) a 4% turnover constraint. 
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Fig. 7.4 plots the MDD time-series and box-whisker summaries for these two dynamic 

portfolios. These can be compared to the results, shown in Figs. 4.18 and 4.19, for the historical 

long-only portfolio subject to 4% daily turnover (the results for the historical long-only portfolio 

subject to no turnover constraint are very similar to those shown in Fig. 4.18). The time series in 

Fig. 7.4 reveal that during the pandemic, the dynamic tangent portfolios under no turnover 

constraint exhibit a larger drawdown and that their MDD is reduced under the 4% constraint. In 

addition, the time series with no turnover constraint reflect the large MDDs for the three tangent 

portfolios during the 2016–2017 period accompanying the decline from the 2014–2016 period of 

high returns. The box-whisker plots show large MDD IQRs for the tangent portfolios under no 

turnover constraint and a strong reduction of that range under the 4% daily turnover constraint. 

 

  
(a) 𝐶TO = ∞ (b) 𝐶TO = 0.04 

Figure 7.5 Box-whisker summary statistics of TO (4.5) and the 𝐿2-norm (4.7) for the dynamic 

long-only domestic portfolio optimizations subject to (a) no turnover constraint and (b) a 4% 

turnover constraint. 

 

Fig. 7.5 shows the TO and 𝐿2-norm box-whisker summary statistics for these dynamic 

optimizations. A comparison to Fig. 4.12, which shows the same for the corresponding historical 

optimizations, indicates that under dynamic optimization, there is a very strong shift to higher daily 

turnover values. Unconstrained, the TO IQRs for the dynamic tangent portfolios span from a Q1 

value of 55% to a Q3 value of 100%, whereas for the historical tangent portfolios, TO Q3 values 

are under 6%. Under a 4% daily constraint, all six dynamic portfolios have Q1 = Q3 = 4%; by 

contrast, among the corresponding six historical portfolios, only T95 and T99 have TO Q3 values 

approaching 4%.  

As noted in the discussion of our implementation of turnover constraints following (4.6), there 

are days on which no optimized weight solution can be found under the imposed value of 𝐶TO. 

This is the case for 𝐶TO = 0.04 in Fig. 7.5, where for such days, the value of 𝐶TO is increased 

through the sequence {0.04, 0.05, 0.06, 0.08, 0.12} until an optimized weight solution can be 

found. If no solution is obtained under this sequence, then asset-weight assignments for day 𝑡 

remain unchanged from those for day 𝑡 − 1 (generating TO and 𝐿2-norm values of zero for such 

days). The 𝐿2-norm distinguishes among outlier values having the same TO value. The 𝐿2-norm 

box-whisker plot therefore gives a better view of the number and separation of the outlier TO 

values that exceed 0.04. Table 7.1 documents the frequency of increase in 𝐶TO value required to 

obtain weight solutions for the portfolios corresponding to Fig. 7.5(b). For the MVP portfolio, 

100% of the daily optimizations succeed under the 4% turnover constraint. For M95, only 95.3% 



7. Dynamic Portfolio Optimization 

91  

succeed under the 4% constraint; an additional 0.6% succeed with the turnover constraint raised 

to 5%; etc. For 1.5% of the dates, no optimized solution with a turnover constraint of 12% can be 

found, and the portfolio weights for that date remain unchanged from the previous trading day. 

For the remaining portfolios, optimization under the 4% turnover constraint succeeds on over 95% 

of the dates. On 1.5% or less of the dates for the M95 and M99 portfolios, no optimizing solution 

with turnover less than 12% can be found. For the T95 and T99 portfolios, this “failure” rate 

increases to 2.2% and 2.5%, respectively. 

 

Table 7.1 Percent of daily optimizations succeeding at each value of turnover 

constraint for the dynamic long-only domestic portfolio optimizations. 

𝐶TO 0.4 0.5 0.6 0.8 0.12 𝒘(𝑡) = 𝒘(𝑡 − 1) 
MVP 100.0 0.0 0.0 0.0 0.0 0.0 

TVP 99.7 0.3 0.0 0.0 0.0 0.0 

M95 95.3 0.6 0.6 0.9 1.0 1.5 

T95 95.1 0.4 0.4 0.5 0.9 2.5 

M99 95.6 0.6 0.5 1.0 1.0 1.3 

T99 95.5 0.4 0.4 0.5 1.0 2.2 

 

Fig. 7.6 shows the time series for the SR, SS, and RR risk measures for these dynamic 

portfolios under a 4% turnover constraint and under no constraint. Prior to 2013, risk measures for 

the tangent portfolios are better under no turnover constraint; the situation reverses after 2013, 

with noticeable improvement during the pandemic. In comparison, the minimum-risk portfolios 

show relatively small changes in risk measure under the change in turnover constraint. 

 

  

  

  
(a) 𝐶TO = ∞ (b) 𝐶TO = 0.04 

Figure 7.6 SR, SS, and RR time series (computed from one-year moving windows) for the 

dynamic long-only portfolio optimizations subject to (a) no turnover constraint and (b) a 4% 

turnover constraint. 
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Fig. 7.7 summarizes the total value for each performance measure over the time period 

12/17/2008 through 12/18/2020 for the benchmarks and 𝐶TO = 0.04 constrained dynamic 

portfolios of Figs. 7.3–7.6. SPY has the best MDD, followed by T95. The tangent portfolios have 

the best SR and SS values. The equal-weighted portfolio has the best RR values, followed by the 

benchmarks (except for SPY) and T95. The remaining two tangent portfolios have competitive RR 

values. 

 

  
Figure 7.7 Performance measure values computed for the total period 12/17/2008 through 

12/18/2020 for the benchmarks and the dynamic long-only domestic portfolio optimizations 

subject to a 4% turnover constraint. 

 

Evaluating the performance of optimization methods by cumulative price and return and 

performance measures, such as the four used here (MDD, SR, SS, and RR), both in time series and 

in total values over a time period, involves dissecting a rich, multidimensional view. In such a 

multidimensional view, how does one determine which optimization is best? There is no single 

answer. Statistically, there are a number of rank correlation tests.65 These are designed to test 

whether two rankings (scoring systems) of a set of items are correlated (i.e., likely to give the same 

ranking of scores), but they do not address the question of which item does the best over the set of 

different rankings. Ostensibly less sophisticated alternatives for addressing this question use 

methods that base a final rank upon some weighted combination of the individual rank scores for 

each item. These methods include 

• taking the average score from each system and then ranking the averages; 

• taking the median score from each system and then ranking the medians; 

• taking the number of first-place scores for each item and ranking accordingly; and 

• ranking (inversely) based on the number of last-place scores. 

We use the first option to compare the performance of the historical and dynamic optimizations of 

the long-only domestic portfolio subject to no turnover constraint and to a 4% daily turnover 

constraint. We rank each of the six optimizations (MVP, M95, M99, TVP, T94, and T99) as well 

as the EQW portfolio and each of the seven benchmarks according to their scores in five ranking 

categories, as follows: 

 
65 Popular rank correlation tests include Spearman’s 𝜌, Kendall’s 𝜏, Goodman and Kruskal’s 𝛾, and Somers’ 𝐷.  
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1. 𝑃(𝑇)/𝑃(0), where 𝑃(𝑇) is the closing price on 12/18/2020 and 𝑃(0) is the closing price on 

12/19/2007; 

2. Total values of MDD, SR, SS, and RR over the time period 12/17/2008 through 12/18/2020. 

Because each of these five measures is differently scaled, each measure is assigned a score from 

the unit interval [0,1]. For measure 𝑀𝑖 for optimization/benchmark 𝑖, 𝑖 = 1,… ,14, its score, 𝑚𝑖, is 

computed as 

𝑚𝑖 =
(𝑀𝑖 − min

𝑗=1,…,14
(𝑀𝑖))

( max
𝑗=1,…,14

(𝑀𝑖) − min
𝑗=1,…,14

(𝑀𝑖))
 , (7.9) 

with the exception of the scores for MDD, which are computed as 1 −𝑚𝑖, so that the 

optimization/benchmark with the lowest MDD value gets the highest numerical score. 

 

Table 7.2 Average score over the five ranking categories for select long-only optimizations.  

H-LO-NO 
 

H-LO-0.04 
 

D-LO-NO 
 

D-LO-0.04 

TVP 0.86 
 

T95 0.87 
 

TVP 0.98 
 

T95 0.97 

T95 0.85 
 

TVP 0.86 
 

T95 0.97 
 

T99 0.81 

T99 0.72 
 

T99 0.72 
 

T99 0.73 
 

TVP 0.80 

SPY 0.52 
 

SPY 0.50 
 

SPY 0.58 
 

SPY 0.47 

EQW 0.43 
 

M95 0.43 
 

EQW 0.40 
 

EQW 0.41 

M95 0.41 
 

EQW 0.42 
 

WD 0.38 
 

M95 0.36 

WD 0.39 
 

WD 0.39 
 

M95 0.38 
 

WD 0.35 

MVP 0.37 
 

M99 0.38 
 

MVP 0.32 
 

M99 0.31 

M99 0.33 
 

MVP 0.36 
 

M99 0.30 
 

MVP 0.28 

FRESX 0.26 
 

FRESX 0.25 
 

FRESX 0.24 
 

FRESX 0.25 

VNQ 0.24 
 

VNQ 0.24 
 

VNQ 0.21 
 

VNQ 0.25 

FT 0.21 
 

FT 0.21 
 

FT 0.18 
 

FT 0.22 

WP 0.19 
 

WP 0.19 
 

WP 0.16 
 

WP 0.20 

USRT 0.19 
 

USRT 0.19 
 

USRT 0.16 
 

USRT 0.20 

 

Table 7.2 summarizes the final rankings of averaged scores over these five ranking categories 

for the benchmarks, the EQW portfolio, the six long-only domestic portfolios under historical 

optimization with no turnover constraint (H-LO-NO) and with 𝐶TO = 0.04 (H-LO-0.04), and the 

six long-only domestic portfolios under dynamic optimization with no turnover constraint (D-LO-

NO) and with 𝐶TO = 0.04 (D-LO-0.04). Note that the order of the benchmarks and EQW cannot 

change with the optimization scheme;66 they rank relative to each other as follows: SPY, EQW, 

WD, FRESX, VNQ, FT, PW, and USRT (the last two tie). The scores assigned to these eight 

portfolios change slightly from one optimization scheme to the next as the minimum and maximum 

values used in (7.9) change slightly with the optimization scheme.   

 
66 This is another reason why rank correlation tests are not useful for this data set. The ranking of this subsample of 8 

of the 14 items is perfectly correlated from one optimization scheme to the next. 
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The three tangent portfolios (TVP, T95, and T99) consistently occupy the top three ranks. SPY 

and EQW consistently occupy ranks 4 and 5. The three minimum-risk portfolios (MVP, M95, and 

M99, together with WD) consistently occupy ranks 6–9. FRESX, VNQ, FT, WP, and USRT 

consistently occupy the bottom ranks, 10–14. T95 occupies rank 1 twice and rank 2 twice, followed 

by TVP (rank 1 twice, rank 2 once). The rank-1 and rank-2 averaged scores for T95 are consistently 

higher (by 12%–15%) in dynamic optimization compared to each historical counterpart (i.e., D-

LO-NO compared with H-LO-NO and D-LO-0.04 compared with H-LO-0.04). Similarly, the 

averaged TVP score is 13% higher for D-LO-NO than for H-LO-NO. The dynamic optimization 

scores for T99 are also equal to or better than their historical counterparts. In contrast to the scores 

of the tangent optimizations, those of the minimum-risk optimizations decrease when they move 

from historical to dynamic optimization. 

The strong evidence that dynamic long-only tangent optimization offers superior performance 

is tempered by the fact that this improvement comes with higher transaction costs (turnover). 

Fortunately, our results indicate that the imposition of turnover constraints as one control over 

such costs does not degrade performance. 

 

7.2.2 Dynamic Jacobs et al. Long–Short Portfolios 

 

Fig. 7.8 displays the results of the cumulative price and log-return achieved by the dynamic Jacobs 

et al. long–short strategy (4.2) allowing for shorting up to 10% of the total weight by any stock 

(𝑠 = 0.1) and subject to a 4% daily turnover constraint (𝐶TO = 0.04). Paralleling the results for 

dynamic long-only optimization, there is marked improvement in the performance of the tangent 

portfolios compared to historical Jacobs et al. long–short optimization (Fig. 4.15(a)). The box-

whisker summaries of TO and 𝐿2-norm values in Fig. 7.9 show the same concentration of daily 

turnover values hitting the 4% daily limit virtually every day. A relaxation of the daily limit using 

the sequence 𝐶TO = {0.04, 0.05, 0.06, 0.08, 0.12} reveals that the percentage values, shown in 

Table 7.3, are very similar to those shown in Table 7.1 for the dynamic long-only simulations. The 

assignment 𝒘(𝑡) = 𝒘(𝑡 − 1) had to be performed on fewer than 2% of the days for any of these 

six, dynamic, long–short optimizations. 

 

  
Figure 7.8 Cumulative price (left) and log-return (right) for the benchmarks and the dynamic 

Jacobs et al. long–short domestic portfolio optimizations subject to 𝑠 = 0.1 and 𝐶TO = 0.04. 
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(b) 𝐶TO = 0.04 

Figure 7.9 Box-whisker summary statistics of TO (4.5) and the 𝐿2-norm (4.7) for the dynamic 

Jacobs et al. long–short domestic portfolio optimizations subject to 𝑠 = 0.1 and 𝐶TO = 0.04. 

 

Table 7.3 Percent of daily optimizations succeeding 

at each range of turnover constraint. 

 [0,0.4] (0.4,0.12] Failed 

MVP 100.0 0.0 0.0 

TVP 99.8 0.2 0.0 

M95 95.1 3.5 1.4 

T95 96.1 2.0 1.9 

M99 95.4 3.4 1.2 

T99 96.1 2.3 1.6 

 

 

  

  

  

  

Historical Dynamic 
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Figure 7.10 Comparison of the performance-measure time series for the historical (left) and 

dynamic (right) Jacobs et al. long–short domestic portfolio optimizations subject to 𝑠 = 0.1 and 

𝐶TO = 0.04. 

 

Fig. 7.10 compares the time series for the performance measures for the historical and dynamic 

Jacobs et al. long–short optimizations of the domestic portfolio. After the Great Recession period, 

and even into the pandemic period, there is clear improvement in MDD values for the tangent 

portfolios under dynamic optimization. Improvements in SR and SS are also evident, but RR 

improvement is questionable. We utilize the average-of-ranking-scores approach used in section 

7.2.1 to evaluate the overall rankings of the historical and dynamic Jacobs et al. long–short 

optimizations of the domestic portfolio subject to 𝑠 = 0.1 and 𝐶TO = 0.04. Table 7.4 presents the 

results. As in the long-only case, the three tangent portfolios occupy the top three ranks. However, 

in the dynamic optimization, these tangent portfolios usually exhibit a decrease in average score. 

SPY and EQW also occupy ranks 4 and 5. The remaining rankings differ from those in the long-

only case. WD and M95 occupy ranks 6 and 7. Other rankings are less consistent between historical 

and dynamic optimization. Interestingly, MPV and M99 occupy the lowest ranks in the historical 

case, but their rankings move up (particularly for MVP) in the dynamic case. 

 

Table 7.4 Average scores over the five ranking categories 

for select Jacob et al. long–short optimizations. 

H-LS-0.04 
 

D-LS-0.04 

TVP 0.783 
 

TVP 0.779 

T95 0.769 
 

T99 0.711 

T99 0.693 
 

T95 0.666 

SPY 0.660 
 

SPY 0.531 

EQW 0.561 
 

EQW 0.461 

WD 0.555 
 

WD 0.427 

M95 0.404 
 

M95 0.352 

FRESX 0.387 
 

MVP 0.311 

VNQ 0.364 
 

FRESX 0.298 

FT 0.331 
 

VNQ 0.286 

WP 0.315 
 

FT 0.257 

USRT 0.302 
 

M99 0.255 

M99 0.238 
 

WP 0.239 

MVP 0.221 
 

USRT 0.236 

 

 

7.2.3 Dynamic Lo–Patel Long–Short Portfolios 

 

We consider dynamic optimization of the domestic portfolio using the Lo–Patel long–short method 

subject to 𝑙𝑒𝑣 = 0.1. This dynamic optimization shows the greatest cumulative price/return 

improvement compared to the corresponding historical optimization. A comparison of Fig. 7.11 

with Fig. 4.4(b) shows a cumulative price improvement of a factor of four for the tangent  
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Figure 7.11 Cumulative price (left) and log-return (right) for the dynamic Lo–Patel long–short 

domestic portfolio optimizations subject to 𝑙𝑒𝑣 = 0.1. 

 

    
Historical Dynamic Historical Dynamic 

Figure 7.12 Box-whisker summaries of the MDD and TO distributions for the historical and 

dynamic Lo–Patel long–short domestic portfolio optimizations subject to 𝑙𝑒𝑣 = 0.1. 

 

  
Historical Dynamic 

Figure 7.13 MDD time series of the historical (left) and dynamic (right) Lo–Patel long–short 

domestic portfolio optimizations subject to 𝑙𝑒𝑣 = 0.1. 

 

portfolios. The MDD box-whisker summaries in Fig. 7.12 show a substantial lowering of Q3 

values for the tangent portfolios under dynamic optimization compared to historical optimization. 

The time series in Fig. 7.13 show the general improvement in MDD values for the dynamic tangent 

portfolios after 2010.  

One advantage of the Lo–Patel method is that it naturally imposes a turnover constraint through 

the value of 𝑙𝑒𝑣. Fig. 7.12 also compares the historical and dynamic box-whisker summaries of 

the TO distribution. Virtually every day, the dynamic optimization requires a 10% turnover of 

asset weights. Days with zero turnover correspond to days on which no optimized weight solution 

that would satisfy the 𝑙𝑒𝑣 = 0.1 constraint can be found (in which case the assignment 𝒘(𝑡) =

𝒘(𝑡 − 1) is made). Table 7.5 summarizes the frequency of occurrence of these assignments. 

Dynamic T95 and T99 optimizations have the lowest success rate, at just under 95%. 
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Table 7.5 Percent of daily Lo–Patel 

optimizations succeeding with the 

𝑙𝑒𝑣 = 0.1  constraint. 

 Historical Dynamic 

MVP 100.0 100.0 

TVP 100.0 100.0 

M95 100.0 97.8 

T95 100.0 94.7 

M99 100.0 97.4 

T99 100.0 94.9 

 

  
Historical Dynamic 

Figure 7.14 Total-time-period performance-measure values for EQW and the historical (left) and 

dynamic (right) Lo–Patel long–short domestic portfolio optimizations subject to 𝑙𝑒𝑣 = 0.1. 

 

Table 7.6 Average scores over the five ranking categories 

for select Jacob et al. long–short optimizations. 

H-LP-0.1 
 

D-LP-0.1 

SPY 0.67 
 

T95 0.83 

T95 0.66 
 

TVP 0.60 

T99 0.63 
 

SPY 0.55 

EQW 0.55 
 

EQW 0.48 

WD 0.55 
 

WD 0.46 

TVP 0.54 
 

MVP 0.44 

MVP 0.38 
 

T99 0.42 

M95 0.38 
 

M95 0.33 

FRESX 0.36 
 

M99 0.30 

VNQ 0.34 
 

FRESX 0.29 

FT 0.30 
 

VNQ 0.28 

WP 0.29 
 

FT 0.25 

USRT 0.27 
 

WP 0.23 

M99 0.25 
 

USRT 0.23 
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Fig. 7.14 compares the total-time-period performance-measure values for EQW and the 

historical and dynamic Lo–Patel optimizations of the domestic portfolio. Moving from historical 

to dynamic optimization, the overall MDD values for the tangent portfolios worsen, but their 

overall SR and SS values show strong improvement. Table 7.6 compares the average-ranking 

scores for the benchmarks, EQW, and the historical (H-LP-0.1) and dynamic (D-LP-0.1) Lo–Patel 

optimizations. Interestingly, the benchmark SPY is now competitive with two of the tangent 

portfolios under Lo–Patel optimization. Whereas SPY ranks first under historical optimization, it 

ranks (significantly) lower than TVP and T95 under dynamic optimization. Whereas M99 ranks 

the lowest among historically optimized portfolios, its rank moves up five places under dynamic 

optimization. Conversely, T99 suffers a strong drop in ranking, from 3 to 7, between H-LP-0.1 

and D-LP-0.1. 

 

7.3 Dynamic Optimization with the Black–Litterman Model 

 

We consider the effect of adding the Black–Litterman approach to the dynamic approach. As noted 

in section 4.5, we run our prototype portfolios without the specification of analyst views. In this 

case, the primary result of adding the Black–Litterman approach is to include the effect of an 

influencing market benchmark. As in section 4.5, we use the returns of the real-estate-oriented 

mutual fund FRESX for this purpose. The Black–Litterman model is therefore implemented as 

discussed in section 4.5 and added to the dynamic approach sketched in Fig. 7.2 and discussed in 

section 7.1.4. 

We consider the BL MVP and BL TVP long-only optimizations of the domestic portfolio with 

a 4% turnover constraint. Fig. 7.15 shows the cumulative price and return performance. Compared 

with the historical optimization (Fig. 6.2(b)), there is a noticeable improvement in the TVP return. 

Fig. 7.16 compares the box-whisker summaries of the TO and 𝐿2-norm distributions of these two 

dynamic portfolios to those of their historical counterparts. Again, it is evident that the large 

number of samples generated by the dynamic simulation forces the majority daily turnover to reach 

the 4% limit, in contrast to the historical simulation, where the majority daily turnover is < 0.5% 

and < 2% for MVP and TVP, respectively. Fig. 7.17 shows the total-time-period performance 

measures. For BL TVP, MDD and SS improved as they moved from historical to dynamic 

optimization, whereas SR experienced essentially no change and RR dropped. For BL MVP, all 

the performance measures worsened under dynamic optimization. 

 

  
Figure 7.15 Cumulative price (left) and log-return (right) for FRESX and the dynamic BL MVP 



Analytics for the Real Estate Market  

 

  

and BL TVP long-only domestic portfolio optimizations subject to a 4% turnover constraint. 

  
Historical Dynamic 

Figure 7.16 Box-whisker summaries of TO and the 𝐿2-norm for the historical (left) and dynamic 

(right) BL MVP and BL TVP long-only domestic portfolio optimizations subject to a 4% turnover 

constraint. 

 

  
Historical Dynamic 

Figure 7.17 Total-time-period performance-measure values for FRESX and the historical (left) 

and dynamic (right) BL MVP and BL TVP long-only domestic portfolios optimizations subject to 

a 4% turnover constraint. 

 

Table 7.7 compares the average-ranking scores for FRESX and these historical (H-BL-0.04) 

and dynamic (D-BL-0.04) Black–Litterman optimizations. Consistent with prior results, BL TVP 

outranks FRESX. Interestingly, BL MVP is top ranked under historical optimization but drops to 

rank 3 under dynamic optimization (with a very low average score). 

 

Table 7.7 Average scores over the five ranking categories 

for select Black–Litterman optimizations. 

H-BL-0.040  D-BL-0.04 

MVP 0.45  TVP 0.51 

TVP 0.37  FRESX 0.31 

FRESX 0.34  MVP 0.14 
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Chapter 8 
Backtesting 

 

Under regulatory guidelines, banks with substantial trading activity are required to set aside capital 

(the market-risk capital requirement) to insure against extreme portfolio loss. The size of the 

capital requirement is determined by the VaR of the portfolio. The VaR at confidence level 1 − 𝛼, 

VaR𝛼(𝑥) is defined in (3.21). If 𝑥 is profit/loss measured in dollars, then a daily VaR0.05 value of 

$1 million means there is a 5% chance that a portfolio will lose $1 million or more during a one-day 

period (assuming the portfolio undergoes no changes over the day). If 𝑥 is return values, then a daily 

VaR0.05 value of 0.017 means there is a 5% chance that the daily return of the portfolio will be 

negative, with a magnitude exceeding 1.7%. As of 2005 (Campbell, 2005), banks have been required 

to report their 1% VaR over a 10-day horizon, VaR̅̅ ̅̅ ̅
0.01(𝑡 ). The market-risk capital requirement was 

then set as the larger of the current horizon estimate and a multiple, 𝑆𝑡, of the average estimate over 

the previous 60 trading days (backtesting): 

MRC(𝑡) = max(VaR̅̅ ̅̅ ̅
0.01(𝑡 ), 𝑆(𝑡)

1

60
∑VaR̅̅ ̅̅ ̅

0.01(𝑡 − 1 )

59

𝑖=0

) + 𝑐 .     

The multiplying factor, 𝑆(𝑡), is itself determined by backtesting by classifying the number of 1% 

VaR violations, 𝑥, in the previous 250 trading days. 

 

Table 8.1 Basel II guidelines for 𝑆(𝑡). 
Zone 𝑥 𝑆(𝑡) − 3 𝐹𝐵(𝑋 ≤ 𝑥|250,0.01) 

Green 

0 0.00 0.0811 

1 0.00 0.2858 

2 0.00 0.5432 

3 0.00 0.7581 

4 0.00 0.8922 

Yellow 

5 0.40 0.9588 

6 0.50 0.9863 

7 0.65 0.9960 

8 0.75 0.9989 

9 0.85 0.9997 

Red ≥ 10 1.00 0.9999 

 

The last column of Table 8.1 gives the binomial cumulative probability distribution for the occurrence 

of ≤ 𝑥 1% VaR violations over 250 days. These cumulative probabilities determine the boundaries 

of the Basel II green, yellow, and red (traffic light) zones. 

Risk-based capital requirements depend on the performance of the portfolio and the accuracy of 

the VaR model, which are coupled to each other. That is, portfolio daily returns are viewed as a 

random variable, and at time 𝑡, the distribution governing these daily returns will be characterized by 

a VaR at a desired confidence level (e.g., 99%). As Christoffersen (1998) points out, if the 

management of the portfolio is responding adequately to market-risk conditions and if the VaR 

estimate is sufficiently accurate, the sequence of VaR violations should satisfy two distinct properties: 
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1. Unconditional coverage: The probability of realizing a violation (i.e., of exceeding VaR𝛼(𝑡)) 

should be 𝛼. Thus, the unconditional-coverage property restricts how often violations should 

occur. 

2. Independence:  The probability of a violation occurring on day 𝑡 should be independent of 

when any previous violation occurred; that is, the previous history of violations should not affect 

their future occurrences. Because market volatility is known to occur in clusters, the requirement 

of independence is a condition not only on the accuracy of the VaR model but also on the rapid 

risk-adjusted active management of the portfolio. 

A number of tests have been devised to examine one or both of these properties; these are described 

in section 8.1. In this chapter, we concentrate on VaR backtesting and demonstrate that dynamic 

simulation (Chapter 7) can improve VaR backtest results over those of historical simulation 

(Chapters 4–6). For the Basel II convention, testing based on VaR0.05 is required; for Basel III, 

testing based on VaR0.01 is required. In addition to considering the 95% and 99% quantile levels, 

we also consider testing based on the 99.5% quantile level (VaR0.005). 

As discussed above, market-risk capital requirements require an accurate estimation of VaR as 

well as tests of the portfolio’s performance measured by VaR. The core binomial question to be 

answered is, Does today’s portfolio return −𝑟𝑝(𝑡) exceed today’s (projected) value of VaR𝛼(𝑟𝑝, 𝑡 ) 

at quantile level 1 − 𝛼? Such an occurrence is viewed as a “failure” (violation). Because the 

portfolio return, 𝑟𝑝(𝑡), is known by the end of the day, the key problem in constructing a backtest 

is the estimation of the value of VaR𝛼(𝑟𝑝, 𝑡 ) relevant for day 𝑡. There are a number of methods for 

performing this estimation, all of which, in one form or another,67 require knowledge of the 

portfolio’s performance over the previous 𝜏 days. 

• For the historical optimizations discussed in Chapters 4–6, we compute VaR𝛼(𝑟𝑝, 𝑡 ) 

empirically, based on synthetic portfolio returns for the previous days 𝑡 − 𝜏,… , 𝑡 − 1. Let 𝑟𝑖,𝑘,
𝑘 = 𝑡 − 𝜏, … , 𝑡 − 1;  𝑖 = 1,… , 𝑛 denote the individual-asset returns over this period, and let 

𝑤𝑖(𝑡), 𝑖 = 1,… , 𝑛 denote the optimized weights used for day 𝑡. Then, the set of returns, 𝑟𝑝,𝑘 =
∑ 𝑤𝑖(𝑡)𝑟𝑖,𝑘
𝑛
𝑖=1  , 𝑘 = 𝑡 − 𝜏,… , 𝑡 − 1, is representative of returns expected for the portfolio on 

day  𝑡. We estimate values of VaR𝛼(𝑟𝑝, 𝑡 ) based on the distribution of the synthetic values 

𝑟𝑝,𝑘 , 𝑘 = 𝑡 − 𝜏,… , 𝑡 − 1. 

• For the dynamic optimizations discussed in Chapter 7, recall that we compute a very large 

sample of dynamic returns {𝑟𝑖,𝑠,𝑡, 𝑠 = 1,… , 𝑆 } for day 𝑡 for each of the  𝑖 = 1,… , 𝑛 assets in 

the portfolio. Applying the actual weights 𝑤𝑖(𝑡), 𝑖 = 1,… , 𝑛 used for the optimized portfolio 

on day 𝑡 to the sample of dynamic asset returns gives a sample of “predicted” portfolio returns 

𝑟𝑝,𝑠,𝑡 = ∑ 𝑤𝑖(𝑡)𝑟𝑖,𝑠,𝑡
𝑛
𝑖=1  , 𝑠 = 1, … , 𝑆. We estimate the values of VaR𝛼(𝑟𝑝, 𝑡 ) based on the 

distribution of the values 𝑟𝑝,𝑠,𝑡 , 𝑠 = 1,… , 𝑆. 

 

8.1 VaR Tests 

 
67 For example, prior portfolio returns could be assumed to follow a particular distribution, such as Gaussian. The 

previous 𝑡 − 𝑇,… , 𝑡 − 1 daily returns would then be fit to said distribution, and VaR𝛼(𝑟𝑝, 𝑡 ) would then be 

computed using the distribution parameters computed from the fit. 
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Assume individual-asset-return data is available for days 1,… , 𝑇. Because our optimization 

methods use a moving window of 𝜏 days to compute optimized portfolio-weight values, the 

backtest data set consists of 𝑁 = 𝑇 − 𝜏 values (days 𝜏 + 1,… , 𝑇) of observed portfolio returns and 

estimated values-at-risk or, equivalently, a time series of 𝑁 values, each value being either 

“success” or “failure.” Standard backtesting involves the following tests on this data set. 

 

8.1.1 Binomial Test 

 

For each of the 𝑁 days, either the (negative of the) portfolio return exceeds the VaR𝛼(𝑟𝑝, 𝑡 ) value 

(a failure) or it does not (a success). The number of failures should follow a binomial distribution 

with 𝛼 being the probability of failure. Thus, we expect to see 𝑁𝛼 failures, with standard deviation 

√𝑁𝛼(1 − 𝛼). Let 𝑥 denote the observed number of failures. Using the z-score 

𝑧(𝑥) =
𝑥 − 𝑁𝛼

√𝑁𝛼(1 − 𝛼)
   (8.1)   

as the test statistic, and assuming 𝑁 and 𝑁𝛼 and 𝑁(1 − 𝛼) are sufficiently large,68 the z-score is 

approximately 𝒩(0,1), where 𝒩 denotes the Gaussian (normal) distribution. Thus, the (tail) 

probability that this z-score is exceeded is 1 − 𝐹G(𝑧(𝑥)), where 𝐹G(∙) is the standard Gaussian 

cumulative probability distribution. Because the binomial test (BIN) is a two-sided test, the 𝑝-

value, 𝑝BIN(𝑧(𝑥)), is twice the tail probability. The binomial test accepts the null hypothesis (that 

the probability of failure is 𝛼) if 

𝑝BIN(𝑧(𝑥)) = 2 [1 − 𝐹G(𝑧(𝑥)) ] > 𝑝test , (8.2)   

where 1 − 𝑝test is the test confidence level, usually set to 0.95; that is, 𝑝test = 0.05. (If 

𝑝BIN(𝑧(𝑥)) < 𝑝test, then 𝑧(𝑥) is further out in the distribution tail than the value determined by 

𝐹G
−1(𝑝test).) 

 

8.1.2 Traffic Light Test 

 

The Basel framework (1996) for backtesting defines the traffic light test, which is again based on 

a binomial distribution. As in section 8.1.1, 𝑁 is the number of observations, 𝛼 is the probability 

of failure, and 𝑥 is the observed number of failures. The probability of observing up to 𝑥 failures 

in 𝑁 “tries” is 

𝑃(𝑋 ≤ 𝑥|𝑁, 𝛼) = 𝐹B(𝑋 ≤ 𝑥|𝑁, 𝛼) , (8.3)   

where 𝐹B(𝑥|𝑁, 𝛼) is the binomial cumulative probability distribution with parameters 𝑁 and 𝛼. 

The Basel framework defines three zones: 

 
68 As long as 𝛼 ≠ 0 or 1, then 𝑁𝛼 = 𝒪(𝑁) and 𝑁(1 − 𝛼) = 𝒪(𝑁) for sufficiently large 𝑁. In practice, it is sufficient 

to ensure min(𝑁𝛼,𝑁(1 − 𝛼)) ≳ 5, which requires 𝑁 ≥ 5 max(1 𝛼⁄ , 1 (1 − 𝛼)⁄ ). 
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green, 𝐹B(𝑋 ≤ 𝑥|𝑁, 𝛼) ≤ 0.95 ,

yellow, 0.95 < 𝐹B(𝑋 ≤ 𝑥|𝑁, 𝛼) ≤ 0.9999 ,

red, 0.9999 < 𝐹B(𝑋 ≤ 𝑥|𝑁, 𝛼) .

 (8.4)   

The probability of a false positive (type 1 error or rejection of a true null hypothesis) is 

𝑃(𝑋 ≥ 𝑥|𝑁, 𝛼) = 𝐹B(𝑋 ≥ 𝑥|𝑁, 𝛼).69 The tests (8.4) are known collectively as the traffic light (TL) 

test. 

The Basel framework also includes a multiplication factor to guide the size of the potential 

increase in a firm’s capital requirements (relative to a baseline) resulting from the traffic light test. 

This is reported as a scaling factor, 𝑠, which is 0 for the green zone and 1 for the red zone and 

increases over the yellow zone based on the relative difference between the assumed VaR quantile 

level, 1 − 𝛼, and the observed quantile level, 1 − 𝑥 𝑁⁄ . Assuming a standard Gaussian 

distribution, the z-score (𝑧assumed) corresponding to the cumulative value 1 − 𝛼 and the z-score 

(𝑧observed) corresponding to the cumulative value 1 − 𝑥 𝑁⁄  can be computed. The scaling factor, 

𝑠yellow, for the yellow zone is then computed as 

𝑠yellow = 3 (
𝑧assumed − 𝑧observed

𝑧observed
) , s. t. 0 ≤ 𝑠yellow ≤ 1 . (8.5)   

 

8.1.3 Kupiec’s Tests 

 

Kupiec (1995) introduced two tests, proportion of failures (PoF) and time until first failure (TUFF). 

The PoF test assesses whether 𝑥 𝑁⁄  is consistent with 𝛼. If the number of failures in 𝑁 tries follows 

a binomial distribution with probability of failure 𝛼, then the probability of seeing 𝑥 failures in  𝑁 

tries is 

𝑃(𝑘|𝑁, 𝛼) = (
𝑁
𝑥
)𝛼𝑥(1 − 𝛼)𝑁−𝑥.    

The PoF test assesses whether 𝑥 𝑁⁄  is consistent with 𝛼 by testing whether the likelihood ratio 

𝑅PoF =
(
𝑁
𝑥
)𝛼𝑥(1 − 𝛼)𝑁−𝑥

(
𝑁
𝑥
) (
𝑥
𝑁)

𝑥
(1 − (

𝑥
𝑁)
)
𝑁−𝑥 =

𝛼𝑥(1 − 𝛼)𝑁−𝑥

(
𝑥
𝑁)

𝑥
(1 − (

𝑥
𝑁)
)
𝑁−𝑥     

is significantly different from 1 or, equivalently, whether the logarithm of this ratio (the log-

likelihood ratio), 

𝐿𝑅PoF = −2 ln(
𝛼𝑥(1 − 𝛼)𝑁−𝑥

(
𝑥
𝑁)

𝑥

(1 −
𝑥
𝑁)

𝑁−𝑥) = −2 [𝑥 ln (
𝑁𝛼

𝑥
) + (𝑁 − 𝑥) ln (

𝑁(1 − 𝛼)

(𝑁 − 𝑥)
)] , (8.6)   

is sufficiently different from 0. The test statistic 𝐿𝑅PoF has the limiting values 

 
69 Note that 𝑃(𝑋 ≤ 𝑥|𝑁, 𝛼) + 𝑃(𝑋 ≥ 𝑥|𝑁, 𝛼) = 1 + 𝑃(𝑋 = 𝑥|𝑁, 𝛼).  
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lim
𝑥→0

𝐿𝑅PoF = −2𝑁 ln(1 − 𝛼) ,

lim
𝑥→𝑁

𝐿𝑅PoF = −2𝑁 ln(𝛼) .
    

For large 𝑁, this statistic follows a chi-square distribution with one degree of freedom. The 𝑝-

value, 𝑝PoF, of the PoF test is the tail probability for values that exceed 𝐿𝑅PoF, that is, 

𝑝PoF = 1 − 𝐹𝜒12(𝐿𝑅PoF) , (8.7)   

where 𝐹𝜒12(∙) is the cumulative distribution for a chi-square distribution with one degree of 

freedom. The PoF test accepts the null hypothesis (that 𝑥 𝑁⁄  is consistent with 𝛼) if 

𝑝PoF > 𝑝test, (8.8)   

where 1 − 𝑝test is a test level set by the user, typically chosen to be 0.95 (𝑝test = 0.05). 

In an identical fashion to PoF, the TUFF test assesses whether the number of trading days, 𝑛1, 

until first failure is consistent with 𝛼. The test again employs the log-likelihood-ratio test statistic 

𝐿𝑅TUFF = −2 ln(
𝛼(1 − 𝛼)𝑛1−1

(
1
𝑛1
) (1 −

1
𝑛1
)
𝑛1−1

) = −2 [ ln(𝑛1𝛼) + (𝑛1 − 1) ln (
𝑛1(1 − 𝛼)

(𝑛1 − 1)
)] . (8.9)   

Equation (8.9) has the limiting value lim
𝑛1→1

𝐿𝑅TUFF = −2ln(𝛼). For large 𝑁, this statistic also 

follows a chi-square distribution with one degree of freedom. Thus, its 𝑝-value, 𝑝TUFF, is given by 

𝑝TUFF = 1 − 𝐹𝜒12(𝐿𝑅TUFF) , (8.10)   

and the TUFF test accepts the null hypothesis (that 𝑛1 is consistent with 𝛼) if 

𝑝TUFF > 𝑝test. (8.11)   

Note that 𝐿𝑅TUFF is undefined if there are no observed failures (𝑛1 = 0). If this happens, two 

scenarios are considered: 

1. If 𝑁 > 1 𝛼⁄  and if the TUFF test fails when 𝑛1 = 𝑁 + 1 is considered (i.e., for the earliest 

possible value that 𝑛1 could have, given that no failure occurred in 𝑁 days), then the test rejects 

the null hypothesis (and values for 𝐿𝑅TUFF and 𝑝TUFF are reported for 𝑛1 = 𝑁 + 1). 

2. Otherwise, it is impossible for the TUFF test to accept or reject the null hypothesis. 

 

8.1.4 Christoffersen’s Tests 

 

Christoffersen (1998) introduced the conditional coverage independence (CCI) test, which 

measures whether the probability of observing a failure on day 𝑡 depends on observing a failure 

on the previous day. Thus, the test considers all possible pairs of days, (𝑡 − 1, 𝑡), and accumulates 

the following values: 

• 𝑛00: number of pairs in which no failure occurred on both days; 

• 𝑛10: number of pairs in which a failure occurred on day 𝑡 − 1 followed by no failure on day 𝑡; 
• 𝑛01: number of pairs in which no failure occurred on day 𝑡 − 1 followed by a failure on day 𝑡; 
• 𝑛1: number of pairs in which a failure occurred on both days. 
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From these values, the following probabilities are estimated: 

• 𝜋0 = 𝑛01 (𝑛00 + 𝑛01 )⁄ : conditional probability of a failure on the second day given no failure 

on the first; 

• 𝜋1 = 𝑛11 (𝑛10 + 𝑛11 )⁄ : conditional probability of a failure on the second day given a failure 

on the first; 

• 𝜋 = (𝑛01 + 𝑛11) (𝑛00 + 𝑛01 + 𝑛10 + 𝑛11 )⁄ : unconditional probability of a failure on the 

second day. 

The CCI test employs a log-likelihood ratio as a test statistic: 

𝐿𝑅CCI = −2 ln (
𝜋𝑛01+𝑛11  (1 − 𝜋)𝑛00+𝑛10

𝜋0𝑛01  (1 − 𝜋0)𝑛00  𝜋1𝑛11  (1 − 𝜋1)𝑛10
) 

= −2 ln(𝜋𝑛01+𝑛11  (1 − 𝜋)𝑛00+𝑛10) + 2  ln(𝜋0
𝑛01  (1 − 𝜋0)

𝑛00)
+ 2  ln(𝜋1

𝑛11  (1 − 𝜋1)
𝑛10). 

(8.12)   

Again, for large 𝑁, this statistic follows a chi-square distribution with one degree of freedom and 

has a 𝑝-value, 𝑝CCI, given by 

𝑝CCI = 1 − 𝐹𝜒12(𝐿𝑅CCI). (8.13)   

The CCI test accepts the null hypothesis (that the probability of failure on day 𝑡 is independent of 

the probability of failure on day 𝑡 − 1) if 

𝑝CCI > 𝑝test . (8.14)   

The test level, 1 − 𝑝test, is typically chosen to be 0.95. 

As shown in (8.12), the test statistic 𝐿𝑅CCI is the sum of three log-likelihood functions, each of 

the form 

𝐿 = ln(𝑝𝑛𝑎(1 − 𝑝)𝑛𝑏) , (8.15)   

where 𝑝, 𝑛𝑎, and 𝑛𝑏 are functions of the 𝑛𝑖𝑗; 𝑖 = 0, 1; 𝑗 = 0, 1. Consider, for example, 

𝐿 = ln(𝜋0
𝑛01  (1 − 𝜋0)

𝑛00) = ln [(
𝑛01

𝑛00 + 𝑛01
)
𝑛01

(
𝑛00

𝑛00 + 𝑛01
)
𝑛00

 ]. 

This term has the property lim
𝑛00→0

𝐿 = lim
𝑛01→0

𝐿 = 0. This property holds for all three terms of the 

form (8.15) in (8.12). Thus, if any of 𝑛00, 𝑛01, 𝑛10, or 𝑛11 are zero, the corresponding log-

likelihood functions in (8.12) are set to 0, and (8.12) remains well-defined. 

Kupiec’s PoF test can be combined with Christoffersen’s CCI test to get the conditional 

coverage (CC) mixed70 test having the test statistic 

𝐿𝑅CC = 𝐿𝑅PoF + 𝐿𝑅CCI, (8.16)   

which for large 𝑁 follows a chi-square distribution with two degrees of freedom. This statistic has 

a 𝑝-value, 𝑝CC, given by 

𝑝CC = 1 − 𝐹𝜒22(𝐿𝑅CCI), (8.17)   

 
70 The CC test is “mixed” because it combines a frequency test (PoF) and an independence test (CCI). 
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where 𝐹𝜒22(∙) is the cumulative probability distribution for a chi-square distribution with two 

degrees of freedom. The CC test is accepted if 

𝑝CC > 𝑝test . (8.18)   

 

8.1.5 Haas’s Tests 

 

Haas (2001) extended the TUFF test to incorporate the time (number of trading days) between 

each successive failure, 𝑖 − 1 and 𝑖 (using TUFF for the case 𝑖 = 1). This is referred to as the time 

between failures independence (TBFI) test. Let 𝑥 be the number of failures and 𝑛𝑖 , 𝑖 = 1, … , 𝑥 

denote the number of days between failure 𝑖 − 1 and 𝑖. (Here, 𝑛1 is the time to first failure as 

defined in section 8.1.3.) Using time between failures as a metric, the TBFI test determines whether 

the failures are independent of each other. A log-likelihood based on the TUFF formula (8.9) is 

defined for each 𝑛𝑖: 

𝐿𝑅TBFI,i = −2 ln(
𝛼(1 − 𝛼)𝑛𝑖−1

(
1
𝑛𝑖
) (1 −

1
𝑛𝑖
)
𝑛𝑖−1

) = −2 [ ln(𝑛𝑖𝛼) + (𝑛𝑖 − 1) ln (
𝑛𝑖(1 − 𝛼)

(𝑛𝑖 − 1)
)] . (8.19)   

Assuming failures are independent, an overall log-likelihood ratio is then the sum of the individual 

log-likelihood ratios, 

𝐿𝑅TBFI𝐼∑𝐿𝑅TBFI,i

𝑥

𝑖=1

 , (8.20)   

which for large 𝑁 follows a chi-square distribution with 𝑥 degrees of freedom. Consequently, the 

𝑝-value, 𝑝TBFI, of the test statistic is 

𝑝TBFI = 1 − 𝐹𝜒𝑥2(𝐿𝑅TBFI), (8.21)   

where 𝐹𝜒𝑥2(∙) is the cumulative probability distribution for a chi-square distribution with 𝑥 degrees 

of freedom. The TBFI test is accepted if 

 𝑝TBFI > 𝑝test . (8.22)   

If no failures are observed (𝑥 = 0), the scenarios discussed in the TUFF test apply. 

Kupiec’s PoF test can be combined with Haas’s TBFI test to get the time between failures 

(TBF) mixed test having the test statistic 

𝐿𝑅TBF = 𝐿𝑅PoF + 𝐿𝑅TBFI, (8.23)   

which for large 𝑁 follows a chi-square distribution with 𝑥 + 1 degrees of freedom. This statistic 

has a 𝑝-value, 𝑝TBF, given by 

𝑝TBF = 1 − 𝐹𝜒𝑥+12 (𝐿𝑅TBF). (8.24)   

The TBF test is accepted if 
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𝑝TBF > 𝑝test. (8.25)   

If there are no failures, the TBF test result is “to accept” only if the separate PoF and TBFI test 

results are “to accept”. 

Campbell (2005) provides a review of various VaR tests. Of these eight tests, the binomial, 

traffic light, and Kupiec’s PoF and TUFF are unconditional-coverage tests. Christoffersen’s CCI 

and Haas’s TBFI are independence tests. The CC and TBF tests are attempts to measure both 

unconditional coverage and independence under one test. For the backtest results discussed in 

section 8.2, we use the value 𝑝test = 0.05 as the basis for accepting or rejecting each test (except 

for TL). 

 

8.2 Backtest Results  

8.2.1 Historical Optimization 

 

We first discuss typical backtesting results for the historically optimized portfolios of Chapters 4 

and 5. Fig. 8.1 shows the time series of daily returns, 𝑟𝑝(𝑡), versus value-at-risk projections, 

VaR1−𝛼(𝑟𝑝, 𝑡), for 𝛼 = 0.05, 0.01, and 0.005 for the TVP long-only domestic portfolio subject to 

a 4% turnover constraint. (See Figs. 4.9–4.12 for the other performance and risk measures for this 

portfolio.) The VaR1−𝛼(𝑟𝑝, 𝑡) is computed using an eight-year (2,016 trading days) rolling window. 

  

 
Figure 8.1 Daily returns, 𝑟𝑝(𝑡), versus value-at-risk projections, VaR1−𝛼(𝑟𝑝, 𝑡), for 𝛼 =

0.05, 0.01, and 0.005 for the TVP long-only domestic portfolio optimizations subject to a 4% 

turnover constraint. 

 

Table 8.2 summarizes the failure data for this portfolio. The variables defining each column 

are defined in sections 8.1.1–8.1.3. The number of observed failures, 𝑥, exceeds the number of 

expected failures, 𝑁𝛼, for all three values of 𝛼, by ratios ranging from 1.16 to 2.08. 
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Table 8.2 Failure statistics for the TVP long-only domestic portfolio. 

1 − 𝛼 1 − 𝑥/𝑁 𝑁 𝑥 𝑁𝛼 𝑥 (𝑁𝛼)⁄  

0.95 0.942 3273 190 163.6 1.16 

0.99 0.98 3273 61 32.7 1.86 

0.995 0.987 3273 34 16.4 2.08 
  

𝑛1 𝑛00 𝑛10 𝑛01 𝑛11 

0.95 5 2925 157 158 32 

0.99 10 3160 51 51 10 

0.995 10 3209 29 29 5 

 

Table 8.3 summarizes the 𝑝-values computed for all eight tests described in sections 8.1.1–8.1.5. 

For all the tests except TL, which prescribes zone boundaries, we use a test level of 0.95 (i.e., 

𝑝test = 0.05) to determine acceptance. For visual clarity, we extend the red-yellow-green color 

scheme of the TL test to the other tests, using red for reject and green for accept. The first four 

tests are for unconditional coverage, the next two are the independence tests, and the last two are 

the mixed tests. As might be anticipated from Table 8.2, almost all the tests fail, with the exception 

of a “yellow zone” result for the TL test for 𝛼 = 0.05 and “acceptance” for the TUFF tests for 

𝛼 = 0.05 and 0.01. With the exception of 𝑝BIN and 𝑝POF for 𝛼 = 0.05 and 𝑝TUFF for 𝛼 = 0.005, 

all the 𝑝-values are ≪ 𝑝test, indicating “strong” rejection of the backtest results. 

 

Table 8.3 Summary of 𝑝-values for the backtests run on the TVP long-only domestic portfolio 

returns. 

1
− 𝛼 

TL BIN PoF 
TUF

F 
CCI TBFI CC TBF 

 
𝑃(𝑋
≤ 𝑥|𝑁, 𝛼) 

𝑝BIN 𝑝POF 𝑝TUFF 𝑝CCI 𝑝TBFI 𝑝CC 𝑝TBF 

0.95 0.982693 0.035 0.039 0.237 
1.8
∙ 10−8 

< 10−40 1.5 ∙ 10−8 < 10−40 

0.99 0.999997 
6.8
∙ 10−7 

9.2
∙ 10−6 

0.089 
9.2
∙ 10−8 

< 10−30 
3.4
∙ 10−11 

< 10−33 

0.99

5 
0.999960 

1.2
∙ 10−5 

1.4
∙ 10−4 

0.041 
1.6
∙ 10−5 

< 10−25 6.5 ∙ 10−8 < 10−27 

 

A subsidiary question we investigate is the role of REIT diversification in VaR performance. For 

this purpose, we perform a comparison of the historical TVP long-only domestic, international, 

and global portfolios. We therefore reconsider the backtest results for the historical TVP long-only 

domestic portfolio over the time period 5/1/2018 through 12/18/2020, the same time period as for 

the international and global  
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Figure 8.2 Daily returns, 𝑟𝑝(𝑡), versus value-at-risk projections, VaR1−𝛼(𝑟𝑝, 𝑡), for 𝛼 =

0.05, 0.01, and 0.005 for the TVP long-only domestic portfolio optimization subject to a 4% 

turnover constraint over the time period 5/1/2018 through 12/18/2020. 

 

portfolios. For this time period, Fig. 8.2 plots the daily returns and VaR1−𝛼(𝑟𝑝, 𝑡) values for 𝛼 =

0.05, 0.01, and 0.005.  Table 8.4 shows the failure data, and Table 8.5 summarizes the test results. 

In contrast to the longer time period covered by Table 8.3, in the shorter time period covered by 

Table 8.5, there are better results at 1 − 𝛼 = 0.995 than at 1 − 𝛼 = 0.95 . Although this 

international portfolio still fails all the independence and mixed tests, the measured 𝑝-values are 

better than for the domestic portfolio. 

 

Table 8.4 Failure statistics for the TVP long-only domestic portfolio optimization over the time 

period 5/1/2018 through 12/18/2020. 

1 − 𝛼 1 − 𝑥/𝑁 𝑁 𝑥 𝑁𝛼 𝑥 (𝑁𝛼)⁄  

0.95 0.904 666 64 33.3 1.92 

0.99 0.973 666 18 6.7 2.70 

0.995 0.986 666 9 3.3 2.70 
  

𝑛1 𝑛00 𝑛10 𝑛01 𝑛11 

0.95 31 551 50 51 13 

0.99 115 634 13 13 5 

0.995 460 650 6 6 3 

 

Table 8.5 Summary of 𝑝-values for the backtests run on the TVP optimized long-only domestic 

portfolio returns over the time period 5/1/2018 through 12/18/2020. 
 TL BIN PoF TUFF CCI TBFI CC TBF 

1 − 𝛼 𝑃(𝑋 ≤ 𝑥|𝑁, 𝛼) 𝑝BIN 𝑝POF 𝑝TUFF 𝑝CCI 𝑝TBFI 𝑝CC 𝑝TBF 

0.95 1.0000 4.8 ∙ 10−8 1.1 ∙ 10−6 0.629 0.0052 
2.0
∙ 10−7 

1.4 ∙ 10−7 < 10−10 
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0.99 0.9999 1.0 ∙ 10−5 2.6 ∙ 10−4 0.886 
4.1
∙ 10−5 

< 10−10 2.8 ∙ 10−7 < 10−12 

0.995 0.9977 0.0018 0.0102 0.333 
7.9
∙ 10−5 

< 10−10 1.5 ∙ 10−5 < 10−10 

 

Fig. 8.3 and Tables 8.6 and 8.7 present the results for the TVP optimized long-only international 

portfolio. 

 

 
Figure 8.3 Daily returns, 𝑟𝑝(𝑡), versus value-at-risk projections, VaR1−𝛼(𝑟𝑝, 𝑡), for 𝛼 =

0.05, 0.01, and 0.005 for the TVP long-only international portfolio optimized subject to a 4% 

turnover constraint. 

 

Table 8.6 Failure statistics for the TVP optimized long-only international portfolio. 

1 − 𝛼 1 − 𝑥/𝑁 𝑁 𝑥 𝑁𝛼 𝑥 (𝑁𝛼)⁄  

0.95 0.924 662 50 33.1 1.51 

0.99 0.974 662 17 6.62 2.56 

0.995 0.985 662 10 3.31 3.02 
  

𝑛1 𝑛00 𝑛10 𝑛01 𝑛11 

0.95 31 569 40 41 11 

0.99 109 624 16 16 5 

0.995 457 642 7 7 5 

 

Table 8.7 Summary of 𝑝-values for the backtests run on the TVP optimized long-only 

international portfolio returns. 

1 − 𝛼 TL BIN PoF 
TUF

F 
CCI TBFI CC TBF 

 
𝑃(𝑋
≤ 𝑥|𝑁, 𝛼) 

𝑝BIN 𝑝POF 𝑝TUFF 𝑝CCI 𝑝TBFI 𝑝CC 𝑝TBF 

0.95 0.9982 0.0026 0.0049 0.629 0.231 0.0045 0.0094 0.0010 
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0.99 0.9998 
5.0
∙ 10−5 

7.1
∙ 10−4 

0.930 0.071 
9.2
∙ 10−9 

6.3
∙ 10−4 

< 10−10 

0.995 0.9994 
2.2
∙ 10−4 

0.0030 0.337 
0.006

6 
< 10−10 

3.1
∙ 10−4 

< 10−11 

 

optimized subject to a turnover constraint of 4%. This portfolio (of seven REITs) is in the TL 

yellow zone and passes the TUFF test at all three 1 − 𝛼 levels. It passes the CCI independence test 

at two 1 − 𝛼 levels. The 𝑝-values for the failed tests are “better” at the 1 − 𝛼 = 0.95 level than at 

the other two levels. 

Fig. 8.4 and Tables 8.8 and 8.9 present the results for the TVP long-only global portfolio 

optimized subject to a turnover constraint of 4%. This global portfolio, of 33 REITS, comprises 

both the domestic and international REIT assets. Although the test results are not quite as good as 

those for the international portfolio, the diversification does result in better performance (Table 

8.9) with respect to the unconditional-coverage tests compared to that for the domestic portfolio 

on its own (Table 8.5). 

 

 
Figure 8.4 Daily returns, 𝑟𝑝(𝑡), versus value-at-risk projections, VaR1−𝛼(𝑟𝑝, 𝑡), for 𝛼 =

0.05, 0.01, and 0.005 for the TVP long-only global portfolio optimized subject to a 4% turnover 

constraint. 

 

Table 8.8 Failure statistics for the TVP optimized long-only global portfolio. 

1 − 𝛼 1 − 𝑥/𝑁 𝑁 𝑥 𝑁𝛼 𝑥 (𝑁𝛼)⁄  

0.95 0.921 662 52 33.1 1.57 

0.99 0.980 662 13 6.62 1.96 

0.995 0.986 662 9 3.31 2.72 
  

𝑛1 𝑛00 𝑛10 𝑛01 𝑛11 

0.95 11 568 41 41 11 

0.99 113 640 8 8 5 
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0.995 456 646 6 6 3 

 

Table 8.9 Summary of 𝑝-values for the backtests run on the TVP optimized long-only global 

portfolio returns. 

1
− 𝛼 

TL BIN PoF TUFF CCI TBFI CC TBF 

 𝑃(𝑋 ≤ 𝑥|𝑁, 𝛼) 𝑝BIN 𝑝POF 𝑝TUFF 𝑝CCI 𝑝TBFI 𝑝CC 𝑝TBF 

0.95 
0.9994 

7.5
∙ 10−4 

0.001

8 
0.574 0.0015 

4.1
∙ 10−8 

4.8 ∙ 10−5 3.2 ∙ 10−9 

0.99 
0.9920 

0.0127 
0.027

7 
0.900 

8.0
∙ 10−7 

< 10−10 4.6 ∙ 10−7 < 10−11 

0.995 
0.9978 

0.0017 
0.009

8 
0.339 

8.0
∙ 10−5 

< 10−11 1.5 ∙ 10−5 < 10−12 

 

 

 

8.2.2 Dynamic Optimizations 

 

We now consider backtesting results for the dynamically optimized portfolios of Chapter 7. Fig. 

8.5 shows the time series of daily returns, 𝑟𝑝(𝑡), versus value-at-risk projections, VaR1−𝛼(𝑟𝑝, 𝑡), 

for 𝛼 = 0.05, 0.01, and 0.005 for the dynamic TVP long-only domestic portfolio optimized 

subject to a 4% turnover constraint. (See Figs. 7.3 through 7.7 for other performance and risk 

measures for this portfolio.) The VaR1−𝛼(𝑟𝑝, 𝑡) was computed using a sample of 10,000 projections 

of 𝑟𝑝(𝑡) based on correlated statistics estimated from the asset returns over an eight-year (2,016 

trading days) rolling window. 

 

 
Figure 8.5 Daily returns, 𝑟𝑝(𝑡), versus value-at-risk projections, VaR1−𝛼(𝑟𝑝, 𝑡), for 𝛼 =

0.05, 0.01, and 0.005 for the dynamic TVP long-only domestic portfolio optimized subject to a 

4% turnover constraint. 
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Table 8.10 summarizes the failure data for VaR backtests at the quantile levels 1 − 𝛼 =

0.95, 0.99, and 0.995 for this portfolio. The variables defining each column are defined in sections 

8.1.1, 8.1.3 and 8.1.3. The number of observed failures, 𝑥, exceeds the number of expected failures, 

𝑁𝛼, for all three values of 𝛼, by ratios ranging from 1.15 to 1.41. 

 

Table 8.10 Failure statistics for the dynamic TVP long-only domestic portfolio optimized 

subject to a 4% turnover constraint. 

1 − 𝛼 1 − 𝑥/𝑁 𝑁 𝑥 𝑁𝛼 𝑥 (𝑁𝛼)⁄  

0.95 0.942 3273 189 163.6 1.15 

0.99 0.987 3273 42 32.7 1.28 

0.995 0.993 3273 23 16.4 1.41 
  

𝑛1 𝑛00 𝑛10 𝑛01 𝑛11 

0.95 5 2912 171 171 18 

0.99 10 3191 39 39 3 

0.995 116 3226 23 23 0 

 

Table 8.11 Summary of 𝑝-values for the backtests run on the dynamic TVP long-only domestic 

portfolio optimized subject to a 4% turnover constraint. 

1 − 𝛼 TL BIN PoF TUFF CCI TBFI CC TBF 

 𝑃(𝑋 ≤ 𝑥|𝑁, 𝛼) 𝑝BIN 𝑝POF 𝑝TUFF 𝑝CCI 𝑝TBFI 𝑝CC 𝑝TBF 

0.95 0.979 0.042 0.047 0.237 0.035 6.810−7 0.015 4.010−7 

0.99 0.952 0.103 0.119 0.089 0.017 0.004 0.017 0.003 

0.995 0.955 0.100 0.121 0.616 0.568 0.123 0.256 0.096 

 

Table 8.11 summarizes the test results. The results are dramatically improved over those for the 

corresponding historically optimized portfolio (shown in Table 8.3). More specifically, all the 

TL tests are in the yellow, and all the remaining tests are passed at the 0.995 level. Moreover, the 

three unconditional-coverage tests, BIN, PoF, and TUFF, are passed at the 0.99 level. 

Based on the results presented, we make the following observations. 

1. Because volatility occurs in clusters, the unconditional-coverage tests are easier to pass than 

the independence tests. Active portfolio management requires additional weight adjustments 

in response to short-term shocks. To emphasize this point, we rerun the tests presented in Table 

8.11 but restrict the time period to 1/1/2010 through 12/31/2019, avoiding the market 

turbulence of the 2008 Great Recession and the 2020 pandemic. The results, shown in Table 

8.12, are much improved. There is still enough volatility clustering to make it difficult to pass 

the independence tests. 

2. No single improvement in optimization (e.g., moving from historical to dynamic) can fully 

improve the backtest performance of a portfolio. Dynamic optimization must be combined 

with an active management approach that incorporates the risk-management techniques of 

Chapter 10. For example, the results of incremental and component risk (section 5.4) must be 

used continuously to monitor the portfolio, identifying its greatest risk-contributing and risk-

diversifying assets and applying additional weighting techniques to capitalize on their risk. 
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Table 8.12 Summary of 𝑝-values for the backtests run on the dynamic TVP long-only domestic 

portfolio optimized subject to a 4% turnover constraint for the time period 1/1/2010 through 

12/31/2019. 

1 − 𝛼 TL BIN PoF TUFF CCI TBFI CC TBF 

 𝑃(𝑋 ≤ 𝑥|𝑁, 𝛼) 𝑝BIN 𝑝POF 𝑝TUFF 𝑝CCI 𝑝TBFI 𝑝CC 𝑝TBF 

0.95 0.285 0.534 0.530 0.352 0.0015 1.4 ∙ 10−7 0.0054 1.6 ∙ 10−7 

0.99 0.810 0.442 0.453 0.132 0.0039 0.0084 0.011 0.010 

0.995 0.865 0.334 0.354 0.108 0.651 0.376 0.587 0.389 
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Chapter 9 

Diversification with Real Estate Stocks 

 

In Chapter 5, we considered the diversification of our domestic REIT portfolio based on the 

addition of international REITs traded over the counter as ADRs. In this sense, the foreign REITs 

are in the same investment class as the domestic REITs. We now consider diversification based on 

the addition of securities from a different investment class – namely, real estate stocks – to our 

domestic REIT portfolio. Following the requirement that daily prices for each stock be available 

since 12/13/1999, we choose the five stocks described in section 2.2. Moreover, adding only five 

stocks to our existing portfolio of 26 REITs has the virtue of exerting an incremental, rather than 

dominant, influence on the portfolio. 

For demonstration purposes, we compare the M95 and T95 optimizations of the REIT-only 

(R) and REITs-plus-stocks (R+S) portfolios using both historical (H) and dynamic (D) methods. 

All eight portfolios are run long-only and subjected to a 0.4% daily turnover constraint. Fig. 9.1 

shows the cumulative price performance of the four CVaR95-minimizing portfolios and the four 

tangent portfolios minimizing the CVaR95 ratio. Under both historical and dynamic optimization, 

adding the stocks significantly improves the price performance of the portfolio. The reverse holds 

for the tangent optimizations, under which adding the stocks dramatically worsens the price 

performance.  

 

  

Figure 9.1 Cumulative price for the domestic REITs-only (R) and REITs-plus-stocks (R+S) 

portfolios optimized under the historical (H) and dynamic (D) M95 (left) and T95 (right) 

methods. The optimizations are long-only and subject to a 0.4% turnover constraint. 

 

We postulate that the improvement seen in the mean-risk portfolios is due to the increased 

number of assets (diversification). Addition of assets potentially reduces the risk contribution of 

any single asset and thus the overall risk exposure. This postulate is supported by the results shown 

in Figs. 9.2–9.4. Fig. 9.2 shows the relative weight given to each asset as a function of time for 

each portfolio and optimization. For instance, a comparison of the historical M95 optimization of 

the R and R+S portfolios indicates how the optimization gives weight to the stocks TRC, NTP, 

MLP, and BVH (but reduces the weights of the REITs IRM, AMT, NLY, and CO). Fig. 9.3 

quantifies this further by plotting the fraction of the portfolio weight contributed by the real estate 

stocks in the historical and dynamic M95 optimizations of the R+S portfolio. For the historical 

M95 optimization, between 20% and 40% of the portfolio weight is assigned to stocks. For the 

dynamic M95 optimization, this fraction varies with time from 0% to 50%. 

Although a discussion based on weights is suggestive (and, as we will show, incorrect in the 

case of T95 optimization), more conclusive evidence of the impact of stock diversification on 
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minimum 

 

  

Historical, REITs only 

  

Historical, REITs + stocks 

  

Dynamic, REITs only 

  

Dynamic, REITs + stocks 

Figure 9.2 Percent asset-weight distributions for the indicated long-only portfolios optimized 

under the M95 (left) and T95 (right) methods. The optimizations are subject to a 0.4% turnover 

constraint. 

 

 

Figure 9.3 Fraction of portfolio weight held by stocks in the REITs-plus-stocks portfolio 

optimized under the historical (H) and dynamic (D) M95 and T95 methods. 
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-risk optimization comes from Fig. 9.4, which compares values-at-risk for the domestic R and R+S 

portfolios subject to historical M95 optimization. This figure shows that, uniformly over time, 

adding the stocks reduces both the 95% and 99% quantile value-at-risk of the portfolio. Fig. 9.5 

quantifies the changes between the R and R+S values-at-risk in the form of box-whisker plots for 

both the historical and dynamic optimizations. 

 

  

Figure 9.4 VaR95 and VaR99 values-at-risk for the domestic REITs-only (R) and REITs-plus-

stocks (R+S) portfolios optimized under the historical (H) and dynamic (D) M95 methods. The 

optimizations are long-only and subject to a 0.4% turnover constraint. 

 

    

Figure 9.5 VaR95 and VaR99 values-at-risk for the domestic REITs-only (R) and REITs-plus-

stocks (R+S) portfolios optimized under the historical (H) and dynamic (D) M95 methods. The 

optimizations are long-only and subject to a 0.4% turnover constraint. Not all outlier values are 

visible in the D,R and D,R+S plots. 

 

As Fig. 9.1 illustrates, adding the stocks diminishes the performance of the T95 portfolio. In 

this case, it is possible that adding arbitrary stocks to the portfolio worsens performance because 

the REITs comprising the portfolio are already optimized to the market. Comparing the VaR95 and 

VaR99 values-at-risk for the historical T95 optimizations (Fig. 9.6) with those for the M95 

optimizations (Fig. 9.4) indicates that including the stocks leads to a worsening of the portfolio’s 

value-at-risk for significant time periods. 

 

  

Figure 9.6 VaR95 and VaR99 values-at-risk for the domestic REITs-only (R) and REITs-plus-

stocks (R+S) portfolios optimized under the historical (H) and dynamic (D) T95 methods. The 
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optimizations are long-only and subject to a 0.4% turnover constraint. 

 

We now consider how adding the stocks affects the risk measures of the portfolio. Fig. 9.7 

compares MDD values (computed using a one-year moving window) for the portfolios/ 

optimizations. For the M95 optimization, over the period 2009–2010, MDD is worse for the R+S 

portfolio than for the R portfolio. For the period 2013–2017, the MDD of the R+S portfolio is 

generally better (historical optimization) or no worse (dynamic optimization) than that of the R 

portfolio. Interestingly, during the pandemic, there are no significant differences in MDD among 

the various portfolios/optimizations. For the T95 optimization, except for a period in 2017, the 

MDD of the R+S portfolio is always worse than that of the corresponding R portfolio, with the 

significant differences occurring during the pandemic period. 

 

 

 

Figure 9.7 MDD (one-year moving average) for the domestic REITs-only (R) and REITs-plus-

stocks (R+S) portfolios optimized under the historical (H) and dynamic (D) M95 (top) and T95 

(bottom) methods. 

 

Fig. 9.8 compares the time evolution of SR (computed using a one-year moving window) as 

well as the total-time-period SR for these portfolios/optimizations. For M95, during the Great 

Recession and pandemic periods, the R+S portfolio has smaller SRs. However, between these two 

periods, the R+S portfolio outperforms in terms of SR. The net effect over the total time period is 

improved SR performance in the R+S portfolio compared to the R portfolio for the same (historical 

or dynamic) M95 optimization. For the T95 optimization, the R+S portfolio outperforms the R 

portfolio in terms of SR only during the 2017 period; for the remainder of the time, the R portfolio 

has better SRs. Thus, over the entire time period, the R+S portfolio undergoes an SR decrease 

compared to the R portfolio under the same (historical or dynamic) T95 optimization. 

Our discussion of SS (see Fig. 9.9) is similar to that of the SR, with the exception that the 

former exhibits a slight decrease under the dynamic M95 optimization in moving from the R to 

the R+S portfolio. Fig. 9.10 shows that for both the M95 and T95 optimizations, the total RR 
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increases as a result of diversifying the REIT portfolio with real estate stocks, with the historical 

optimization producing greater increases than the dynamic optimization. 

 

  

  

Figure 9.8 SR versus time (one-year moving window) (left) and total-time-period SR (right) for 

the domestic REITs-only (R) and REITs-plus-stocks (R+S) portfolios optimized under the 

historical (H) and dynamic (D) M95 (top) and T95 (bottom) methods. 

 

  

  

Figure 9.9 SS versus time (one-year moving window) (left) and total-time-period SS (right) for 

the domestic REITs-only (R) and REITs-plus-stocks (R+S) portfolios optimized under the 

historical (H) and dynamic (D) M95 (top) and T95 (bottom) methods. 
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Figure 9.10 RR versus time (one-year moving window) (left) and total-time-period RR (right) 

for the domestic REITs-only (R) and REITs-plus-stocks (R+S) portfolios optimized under the 

historical (H) and dynamic (D) M95 (top) and T95 (bottom) methods. 
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Chapter 10 
Risk Information and Management 

 

Focusing on risk-management tools, this chapter covers three topics that concern risk information 

and management: early warning systems (section 10.1); risk budgets, incremental risk, and 

component risk (section 10.3); and factor analysis (section 10.4). To complement the discussion 

of component risk, in section 10.2 we discuss the time evolution of asset weights. 

 Timely and accurate information is essential in managing investment risk. An early warning 

system continually tests market risk and has the potential to forecast distressed market periods. 

There are open questions regarding the capability of early warning systems, including concerns 

about signal-to-noise ratio and how early detection can be achieved. We consider two warning 

systems, the first based on the tail-loss ratio (TLR) and the second on Mahalanobis distance. We 

apply these warning systems to historical data for the one general market index (SPY: SPDR S&P 

500 ETF Trust) and three REIT indices (WILLREITIND, WILLREITPR, and FNRE) used in 

Chapter 3 and compare the results to known global-market upheavals. 

Changes made to a portfolio (either in normal investment mode or in response to anticipated 

market disruption) alter investment risk. The change in risk accompanying the change in some 

factor in a portfolio is referred to as incremental risk. Measures of incremental risk facilitate risk–

return decision-making. Closely aligned with the concept of incremental risk is the decomposition 

of a portfolio into its constituent (or component) risks. Such a decomposition is useful for 

identifying both high and low sources of risk, setting position limits, determining capital 

requirements, etc. We illustrate these two risk-management techniques by applying them to the 

various long-only and long–short portfolios of domestic REIT ETF assets developed in Chapter 3. 

In our analysis, we use VaR as the proxy measure of risk. Thus, our discussion centers on 

incremental VaR and component VaR. 

The principal question addressed by a factor model is whether, given a time series of returns 

for a portfolio, there are (a few) common factors responsible for (most of) the observed behavior. 

Factor analysis provides the answer to this question in terms of the relative influence (loading or 

“beta”) of each common factor on the return of each asset as well as in terms of an estimate of the 

portion of the return behavior (the latent error) that remains unexplained by the common factors. 

We apply a factor analysis to an equally weighted portfolio tracking 20 indices consisting of (i) 

the MVP long-only domestic portfolio (interpreted as an index) of section 4.1.1, (ii) the ETF SPY, 

(iii) the three REIT indices listed in section 2.3.1, and (iv) the 15 market-representative assets 

listed in section 2.4. 

 

10.1 Early Warning Systems 

 

Research has shown that structural breaks in financial time series can predict market disruptions 

(Andreou and Ghysels, 2009). The Chow test (Chow, 1960) is used to determine whether such 

structural breaks are present. We therefore consider an early warning system that utilizes the Chow 

test to look for structural breaks in the (time-averaged) behavior of a time series.  

 

10.1.1 Chow Test for a Structural Break 
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Consider an observed time series 𝑦𝑡, 𝑡 = 1,… , 𝑇. A common approach is to try to fit a 

predictive regression model with a small number of parameters to the time series. However, there 

may be a significant structural break at some intermediate time 1 < 𝑇1 < 𝑇 such that the time 

series is better fit by two regression models,71 the first over the time interval 1 ≤ 𝑡 ≤ 𝑇1 and the 

second over the interval 𝑇1 + 1 ≤ 𝑡 ≤ 𝑇. The Chow test (Chow, 1960) is an application of the F-

test that has the following null hypothesis: The coefficients of the two regression models are the 

same; that is, no structural break exists. For the early-warning-system computations in this 

chapter, we utilize a linear regression model. 

To examine a time series for structural breaks, we employ a moving window of 𝑁 < 𝑇 trading 

days. For time 𝑡, the window isolates the subset of the time series (𝑡 − 𝑁 + 1, 𝑡). Let 𝑁2 < 𝑁. We 

look for a break in this subset between the successive times 𝑡 − 𝑁2 and 𝑡 − 𝑁2 + 1. Then, 𝑁1 =

𝑁 − 𝑁2 is the length of the time-period [𝑡 − 𝑁 + 1, 𝑡 − 𝑁2].  Let 𝑅𝑆𝑆(𝑡) be the sum of squared 

residuals of the regression model fit to the time series of length 𝑁 in the entire window, and let 

𝑅𝑆𝑆1(𝑡) and 𝑅𝑆𝑆2(𝑡) be the sum of squared residuals from the regression models over the two 

separate time intervals of lengths 𝑁1 and 𝑁2. Assume the regression model has K parameters. The 

Chow test statistic is 

𝐹Chow(𝑡) =
(𝑅𝑆𝑆(𝑡) − RSS1(𝑡) − RSS2(𝑡)) 𝐾⁄

(RSS1(𝑡) + RSS2(𝑡)) (𝑁1 + 𝑁2 − 2𝐾)⁄
 ~𝐹𝐾,𝑁1+𝑁2−2𝐾 . (10.1) 

As noted in (10.1), the Chow statistic follows an F-distribution with 𝐾 and 𝑁1 + 𝑁2 − 2𝐾 degrees 

of freedom. We use the hypothesis test to generate a probability value 𝑝(𝑡)72 to indicate whether 

a breakpoint occurs between 𝑡 − 𝑁2 and 𝑡 − 𝑁2 + 1. We use a threshold value of 5% to declare 

the probable existence of a breakpoint. Thus, we can define the “hypothesis acceptance/rejection” 

time series as follows: 

ℎ(𝑡) =  {
1 if 𝑝(𝑡) ≤ 0.05,

0 if 𝑝(𝑡) > 0.05.
 (10.2) 

A value of ℎ(𝑡) = 1 indicates a rejection of the null hypothesis, that is, ℎ(𝑡) = 1 indicates the 

existence of a breakpoint at a 95% confidence level. A value of ℎ = 0 indicates acceptance of the 

null hypothesis, no breakpoint, with 95% confidence. 

 

10.1.2 Early Warning Based on Tail-Loss Ratio 

 

A TLR has been proposed as a risk measure for determining financial market behavior before and 

during periods of high volatility (see Shirvani et al., 2019). The ratio (defined below) was originally 

based on the normalized difference between values of VaR (3.21) and CVaR (3.22). We also 

consider some alternatives. Intuitively, a CVaR value that begins to differ considerably from the VaR 

 
71 We restrict to the case in which both regression models have the same form but have different values for the 

parameters. 
72 Under the null hypothesis of no structural break, the value 𝑝(𝑡) is the largest probability to have a value of 

𝐹𝐾,𝑁1+𝑁2−2𝐾 that is as extreme (or more extreme) than the value of  𝐹Chow(𝑡) observed. If 𝑝(𝑡) is very small, then an 

unusual event relative to the null hypothesis is considered to have occurred. 
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value indicates the growing presence of low-probability, high-impact losses. Because the VaR and 

CVaR of an asset (portfolio, market index) will change over time, for given tail probabilities α and 

𝛽 where 0 <  𝛼 < 𝛽 < 1, we define the tail-loss-ratio time series TLR(𝑡; 𝛼, 𝛽) as 

TLR(𝑡; 𝛼, 𝛽) =
CVaR𝛼(𝑡) − VaR𝛽(𝑡)

VaR𝛽(𝑡)
=
CVaR𝛼(𝑡)

VaR𝛽(𝑡)
− 1 ,    1 ≤ 𝑡 ≤ 𝑁 . (10.3a) 

We also consider this variant of (10.3a), 

MTLR(𝑡; 𝛼, 𝛽) =
MVaR𝛼(𝑡)

VaR𝛽(𝑡)
− 1 =  

VaR𝛼 2⁄ (𝑡)

VaR𝛽(𝑡)
− 1 ,    1 ≤ 𝑡 ≤ 𝑁 , (10.3b) 

where MVaR𝛼(𝑡) is the median value of VaR values corresponding to all the probabilities between 0 

and 𝛼.73 MTLR is an improvement on TLR in the sense that the median value MVaR is much less 

influenced by outlier values than is the average value CVaR.  

To test the models (10.3a) and (10.3b), we apply them to the historical returns for the four 

market indices listed in section 2.3.1: SPY, WILLREITIND, WILLREITPR, and FNRE. Return data 

for all four indices is available beginning 12/13/1999. We track return data from that day through 

7/26/2019. For each index, empirical daily VaR and CVaR values are estimated from the daily 

log-return data using a rolling-window analysis with a window of four years74 (1,008 trading days). 

As a result, VaR and CVaR values are available from 1/9/2004 through 7/26/2019. The daily 

returns, TLR(𝑡; 0.01,0.10) and MTLR(𝑡; 0.01,0.10) values computed for the WILLREITIND 

index are shown in Fig. 10.1. Because CVaR𝛼(𝑡) ≥  MVaR𝛼(𝑡) ≥ VaR𝛼(𝑡) ≥ VaR𝛽(𝑡) for 𝛼 <

𝛽, we have TLR(𝑡; 𝛼, 𝛽) ≥ MTLR(𝑡; 𝛼, 𝛽) for any time value 𝑡, as Fig. 10.1 indicates. Fig. 10.1 

also shows the major global-market disruptions, indicated by the date commonly associated with 

the disruption. The correlation between volatility in the returns and some of these disruptions is 

plainly evident. 

 

 
a: Chinese stock bubble; b: U.S. bear market; c: Great Recession; d: Dubai debt standstill; e: European sovereign 

debt crisis; f: U.S. flash crash; g: U.S. Aug. 2011 decline; h: China crash; i: U.S. market selloff; j: cryptocurrency 

selloff. 

Figure 10.1 Daily returns and computed TLR and MTLR values for the WILLREITIND index. 

 

However, the tail-loss ratio (10.3a) is an unstable measure when VaR𝛽(𝑡)~0 (because 

TLR(𝑡; 𝛼, 𝛽) → +∞ as VaR𝛽(𝑡) → 0+ while TLR(𝑡; 𝛼, 𝛽) → −∞ as VaR𝛽(𝑡) → 0− ) resulting in 

spurious breakpoints when VaR𝛽(𝑡) moves even slightly between small positive and negative 

 
73 Therefore, MVaR𝛼(𝑡) is just VaR𝛼 2⁄ (𝑡). 
74 As per Basel II. 
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values. Fig. 10.2 illustrates this instability for TLR(𝑡; 𝛼 = 0.01, 𝛽 = 0.50) computed for the 

WILLREITIND return data. Because it has the same denominator, MTLR is subject to the same 

instability. 

 

 
a: Chinese stock bubble; b: U.S. bear market; c: Great Recession; d: Dubai debt standstill; e: European sovereign 

debt crisis; f: U.S. flash crash; g: U.S. Aug. 2011 decline; h: China crash; i: U.S. market selloff; j: cryptocurrency 

selloff. 

Figure 10.2 The unstable character of TLR(𝑡; 𝛼 = 0.01, 𝛽 = 0.50) as computed for the 

WILLREITIND return data. 

 

To address this unstable behavior, we replace (10.3a) and (10.3b) by the “tail-loss spread” 

between CVaR𝛼(𝑡) or MVaR𝛼(𝑡) and VaR𝛽(𝑡), which, again for 0 <  𝛼 < 𝛽 < 1, are defined as 

TLS(𝑡; 𝛼, 𝛽) = CVaR𝛼(𝑡) − VaR𝛽(𝑡) ,     1 ≤ 𝑡 ≤ 𝑁 , (10.3c) 

MTLS(𝑡; 𝛼, 𝛽) = MVaR𝛼(𝑡) − VaR𝛽(𝑡)  = VaR𝛼/2(𝑡) − VaR𝛽(𝑡) ,   1 ≤ 𝑡 ≤ 𝑁 . (10.3d) 

Note that TLS(𝑡; 𝛼, 𝛽) ≥ MTLS(𝑡; 𝛼, 𝛽) for any time value 𝑡. Fig. 10.3 presents plots of 

TLS(𝑡; 𝛼 = 0.01, 𝛽 = 0.50) and  MTLS(𝑡; 𝛼 = 0.01, 𝛽 = 0.50) computed for the WILLREITIND 

return data. 

 

 
a: Chinese stock bubble; b: U.S. bear market; c: Great Recession; d: Dubai debt standstill; e: European sovereign 

debt crisis; f: U.S. flash crash; g: U.S. Aug. 2011 decline; h: China crash; i: U.S. market selloff; j: cryptocurrency 

selloff. 

Figure 10.3 Daily returns and comparisons of TLS to MTLS for the WILLREITIND index. 

 

In the computations performed in this chapter, when 𝛽 = 0.5, we use the measures TLS and 

MTLS. For the values of 𝛽 ≤ 0.25 that we consider, we use the TLR and MTLR measures. 

However, switching between measures (10.3a), (10.3b) and (10.3c), (10.3d) depending on the 

value of 𝛽 is cumbersome and undesirable. For this reason, we propose the following measure to 

avoid the instability issue: 
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TLRWBL(𝑡; 𝛼) =
CVaR𝛼(𝑡) − VaR0.5(𝑡)

MVaR0.5(𝑡) − VaR0.5(𝑡)
=
CVaR𝛼(𝑡) − VaR0.5(𝑡)

VaR0.25(𝑡) − VaR0.5(𝑡)
 .    

(10.3e) 

0 <  𝛼 < 0.25,   1 ≤ 𝑡 ≤ 𝑁 . 

The denominator of TLRWBL is MTLS(𝑡; 𝛼 = 0.5, 𝛽 = 0.5), which is also half of the IQR of the 

distribution of VaR values. Fig 10.4 shows the daily returns and TLRWBL(𝑡; 𝛼 = 0.01) values for 

the WILLREITIND index. 

 

 
a: Chinese stock bubble; b: U.S. bear market; c: Great Recession; d: Dubai debt standstill; e: European sovereign 

debt crisis; f: U.S. flash crash; g: U.S. Aug. 2011 decline; h: China crash; i: U.S. market selloff; j: cryptocurrency 

selloff. 

Figure 10.4 Daily returns and TLRWBL(t; α = 0.01) for the WILLREITIND index. 

 

Equations (10.3a)–(10.3d) each provide a two-parameter (𝛼, 𝛽) model of an early warning 

system.75 Fig. 10.5 compares TLR(𝑡; 0.01,0.10) for the four indices. Plots for MTLR, TLS, and 

MTLS for this and other values of 𝛼, 𝛽 are qualitatively similar, except that as the difference 𝛽 −

𝛼 increases (decreases), the range of TLR values increases (decreases). To summarize the results 

displayed in Figs. 10.1–10.5 for the four indices, although there is some evidence of rapid change 

in the values of the time series (10.3a)–(10.3e) around the dates of certain market disruptions, there 

are market disruption dates for which no rapid change in TLR value is apparent, and there are rapid 

changes in TLR that are not correlated with a market disruption. We therefore employ the Chow 

test to look for structural breaks in the time series (10.3a)–(10.3d). 

 

 
a: Chinese stock bubble; b: U.S. bear market; c: Great Recession; d: Dubai debt standstill; e: European sovereign 

debt crisis; f: U.S. flash crash; g: U.S. Aug. 2011 decline; h: China crash; i: U.S. market selloff; j: cryptocurrency 

selloff. 

Figure 10.5 Comparison of TLR(𝑡; 0.01,0.10) across the four indices. 

 

Fig. 10.6 plots the time series 𝑝(𝑡) and ℎ(𝑡) for Chow tests run on the WILLREITIND index 

for the values 𝛼 = 0.01, 𝛽 = 0.50 using the MTLS spread values (10.3d). We choose a window 

 
75 (5e) provides a one-parameter model. 
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size of 𝑁 = 1,008 trading days and consider three values for 𝑁2: 126 trading days (six months), 

63 trading days (three months), and 21 trading days (one month). Note that as 𝑁2 decreases (𝑁1 

increases), the start and end dates of the time series move accordingly. As a result, the 11/10/2007 

date, normally associated with the beginning of the 2007–2009 U.S. bear market, moves out of the 

range of breakpoint dates tested when 𝑁1 = 987. 

Concentrating on the hypothesis acceptance/rejection function ℎ(𝑡), when 𝑁2 = 126 trading 

days, we see a strong signal for breakpoints in MTLS(𝑡; 𝛼 = 0.01, 𝛽 = 0.50) occurring as early as  

 

 

 
b: U.S. bear market; c: Great Recession; d: Dubai debt standstill; e: European sovereign debt crisis; f: U.S. flash 

crash; g: U.S. Aug. 2011 decline; h: China crash; i: U.S. market selloff; j: cryptocurrency selloff. 

Figure 10.6 𝑝(𝑡) and ℎ(𝑡) for the Chow test on (10.3d) with varying values of 𝑁2 for the 

WILLREITIND index. 

 

164 trading days before 9/16/2008 – the failure date of large financial institutions in the United 

States and the start of the Great Recession. The signal lasts for 10 trading days following the Dubai 

debt deferment. For the European sovereign debt crisis, the U.S. flash crash, or the U.S. August 

2011 decline, no breakpoint signal appears. Breakpoints commensurate with the China crash and 

U.S. market selloff are detected; some of these occur as early as 45 trading days before the China 

crash. No breakpoint signal associated with the 2018 cryptocurrency crash appears.  

When 𝑁2 is shortened to 63 trading days, the association between breakpoints and market 

disruptions continues as noted for 𝑁2 = 126; however, the “strength” of the signal (measured in 

terms of how early and over what duration of time) is somewhat weaker. For example, a continuous 

set of breakpoints associated with the Great Recession appears as early as 112 trading days before 

9/16/2008, but it disappears before the date of the Dubai debt deferment.  

When 𝑁2 is shortened to 21 trading days, the breakpoint signals become even weaker. The 
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behavior for the other three market indices is qualitatively similar to that displayed for the 

WILLREITIND index. 

Curiously, we detect a strong breakpoint signal over the period 5/8/2012 through 4/15/2013, a 

period not associated with any global-market disruption. As Fig. 10.7 indicates, this signal is just 

as strong for the other three indices. Several factors could have contributed to this observed 

signal.76,77 

 

 

 

 
b: U.S. bear market; c: Great Recession; d: Dubai debt standstill; e: European sovereign debt crisis; f: U.S. flash 

crash; g: U.S. Aug. 2011 decline; h: China crash; i: U.S. market selloff; j: cryptocurrency selloff. 

 
76 “At the property level, the period in question was characterized by the recovery stage of the cycle, compressing 

rates of return and rising property prices. I find no reason for these signals at the property level. I therefore conclude 

that the signals were at the REIT level, not at the property level. My surmise, certainly no more than that, is that the 

signals were driven by political concerns/risks, that is, the prospect of Obama’s reelection and concomitant tax 

increases, additional regulations making it more difficult do business, etc. Signals after the election likely reinforced 

these concerns. I have not examined REIT share prices before, during, and after this period.” (Stephen Crosson, Integra 

Realty Resources, 7/9/2020) 
77 Kimberly Amadeo’s The Balance article, updated May 13, 2019 (https://www.thebalance.com/u-s-economy-2012-

3305742), provides an analysis of the economic uncertainties of 2012. She notes that the greatest uncertainty was the 

2012 presidential election, which featured “two candidates with radically different approaches to stimulating economic 

growth.” Consequently, economic growth slowed “as businesses waited to see what direction the country would take.” 

She attributes the second-largest factor to the uncertainty surrounding the January 1, 2013, economic cliff of 

impending tax increases and spending cuts. This uncertainty “kept $1 trillion of corporate expenditures on the 

sidelines.” The continuing eurozone debt crisis also “wreaked havoc with the U.S. stock market.” Amado notes that, 

countering these negative forces, (i) the Federal Reserve continued to implement monetary stimulus measures, (ii) the 

housing market improved as “federal courts settled with banks over the robo-signing accusations,” and (iii) 

“consumers waded through their debt and resumed shopping.” As a result, “the economy ended the year with a 2.2 

percent growth rate” – a healthy rate, but not high enough to absorb the component of the workforce still unemployed 

from the 2008 financial crisis. 
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Figure 10.7  𝑝(𝑡) and ℎ(𝑡) for the Chow test on (10.3d) with 𝑁2 = 126 for the other three 

indices. 

 

Rather than vary the size of the subwindows, 𝑁1 and 𝑁2, we examine the question of varying 

𝛼 and 𝛽. We employ the MTLR measure (10.3b) and use the values 𝑁1 = 882, 𝑁2 = 

 

 

 
b: U.S. bear market; c: Great Recession; d: Dubai debt standstill; e: European sovereign debt crisis; f: U.S. flash 

crash; g: U.S. Aug. 2011 decline; h: China crash; i: U.S. market selloff; j: cryptocurrency selloff. 

Figure 10.8  𝑝(𝑡) and ℎ(𝑡) for the Chow test on (10.3b) with varying 𝛽 for the WILLREITIND 

index. 

 

126, which produce the strongest “signal” in Fig. 10.6. We hold 𝛼 = 0.01 and vary 𝛽 over the 

values 0.25, 0.10, and 0.05. Fig. 10.8 shows the results. Comparing these results with the 𝛼 =

0.01, 𝛽 = 0.50 results presented in Fig. 10.6, we see that the duration of the signals generally 

appears to decrease as 𝛽 → 𝛼. There is one exception: the signal associated with 9/16/2008 and 

the start of the Great Recession. For 𝛽 = 0.25, the breakpoint sequence begins 128 trading days 

before 9/16/2008 and lasts 290 trading days. For 𝛽 = 0.10, the breakpoint sequence begins 173 

trading days before 9/16/2008 and lasts 331 trading days. For 𝛽 = 0.05, the breakpoint sequence 

begins 180 trading days before 9/16/2008 and lasts 332 trading days. For comparison, for 𝛽 =

0.50 (Fig. 10.6), the breakpoint sequence begins 164 trading days before 9/16/2008 and lasts 479 

trading days. However, the results in Fig. 10.6 are for the MTLS measure rather than the MTLR 

measure employed in Fig. 10.8, which may account for the difference. What is clear is that the 

financial crisis leading to the Great Recession produces a strong precursor signal that predates the 

9/16/2008 crisis point and lasts well into the Great Recession. 
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10.1.3 Early Warning Based on Mahalanobis Distance 

 

In this section, we consider an early warning system based on Mahalanobis distance. Again, we 

seek to capture market signals from tail dependencies (extreme events). To capture the tail 

dependence, we employ the concept of the copula. After estimating copulas empirically, we 

calculate the Mahalanobis distance between successive copulas. Finally, we analyze structural 

breaks in the Mahalanobis-distance time series using the Chow test. We begin by expanding on 

these concepts. 

 

10.1.3.1 Copulas 

 

Let 𝑋𝑖 be a random variable. 𝐹𝑖(𝑥) = Pr[𝑋𝑖 ≤ 𝑥] is the cumulative distribution function (CDF) for  

𝑋𝑖. Whereas values of 𝑋𝑖 are generally distributed over the range (−∞,∞) or (0,∞), values of the 

random variable 𝑈𝑖 = 𝐹𝑖(𝑋𝑖) are uniformly distributed over [0,1]. In particular, information in the 

long tails of the distribution for 𝑋𝑖 is compressed into information for 𝑈𝑖 in the compact interval 

[0,1]. As a result, tail events are weighted with larger probability in the transformed variable. 

Consider 𝑁 random variables, 𝑋1, … , 𝑋𝑁, which may be correlated with each other. The copula 

of the transformed random variables is 

𝐶(𝑢1, … , 𝑢𝑁) = Pr(𝑈1 ≤ 𝑢1, … , 𝑈𝑁 ≤ 𝑢𝑁 ) ,

i. e.    𝐶(𝑢1, … , 𝑢𝑁) = Pr(𝐹1(𝑋1) ≤ 𝑢1, … , 𝐹𝑁(𝑋𝑁) ≤ 𝑢𝑁 ) .
 (10.4) 

Thus, the copula 𝐶 is a multivariate cumulative distribution function. It retains all the information 

on the dependence structure between the components 𝑋𝑖. Of particular significance is Sklar's 

theorem, which states that any multivariate joint distribution can be written in terms of univariate 

marginal distribution functions and a copula describing the dependence structure between the 

variables. In practice, an empirical copula is computed based on a (large) sample of observed 

values for each 𝑋𝑖. Note that if each CDF, 𝐹𝑖(𝑥), can be inverted, then the inverse map 

𝑋1, … , 𝑋𝑁 = 𝐹1
−1(𝑈1`),… , 𝐹𝑁

−1(𝑈𝑁) (10.5) 

transforms observations of the 𝑈𝑖 into observations of the 𝑋𝑖. Equation (10.4) can be rewritten in 

terms of the inverses, 𝐹𝑖
−1: 

𝐶(𝑢1, … , 𝑢𝑁) = Pr(𝑋1 ≤ 𝐹1
−1(𝑢1),… , 𝑋𝑁 ≤ 𝐹𝑁

−1(𝑢𝑁) ) . (10.6) 

Our random variables 𝑋𝑖 will be the daily log-return 𝑟𝑖
𝑡  for the 𝑖 = 1,… , 𝑁 assets in a portfolio. 

The CDFs, 𝐹𝑖
𝑡(𝑟), 𝑖 = 1,… ,𝑁,  are estimated empirically using the historical log-return values 𝑟𝑖

𝑘,

𝑖 = 1, … ,𝑁;  𝑘 = 𝑡 − (𝜏1 − 1),… , 𝑡, for a window size 𝜏1 < 𝑇: 

𝐹𝑖
𝑡(𝑟)  =

1

𝜏1
∑ 𝟏(𝑟𝑖

𝑘 ≤ 𝑟 )

𝑡

𝑘=𝑡−𝜏1+1

 . (10.7) 

Here, 𝟏(𝑎 ≤ 𝑏 ) is the indicator function. The empirically transformed return values are 𝑢𝑖
𝑘 =

𝐹𝑖
𝑡(𝑟𝑖

𝑘), 𝑖 = 1,… ,𝑁;   𝑘 = 𝑡 − 𝜏1 + 1,… , 𝑡, and the empirically evaluated copula is 
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𝐶𝑡(𝑢1, … , 𝑢𝑁) =
1

𝜏1
∑ 𝟏(𝑢1

𝑘 ≤ 𝑢1, … , 𝑢𝑁
𝑘 ≤ 𝑢𝑁 )

𝑡

𝑘=𝑡−𝜏1+1

 . (10.8) 

We are interested in a specific value of the empirical copula 

𝐶𝑡(𝑢1
𝑡 , … , 𝑢𝑁

𝑡 ) =
1

𝜏1
∑ 𝟏(𝑢1

𝑘 ≤ 𝑢1
𝑡 , … , 𝑢𝑁

𝑘 ≤ 𝑢𝑁
𝑡  )

𝑡

𝑘=𝑡−𝜏1+1

 , (10.9) 

which, loosely speaking, is the average probability that the log-returns of the assets over the last 

𝜏1 days are less than today’s returns. 

We apply the computation of the empirical copula (10.9) to the returns of a portfolio 

consisting of the 26 domestic REITs and the four indices, SPY, WD, WP, and FNRE. (Thus, 

𝑁 = 30.) Return values for all the assets are available over the common time period 01/03/2000 

through 07/26/2019. We use a window size of 𝜏1 = 1,008 trading days. Fig. 10.1 shows the time 

series of the daily returns beginning from 01/09/2004 for one of the assets in this portfolio, the 

index WD. The empirical copula probabilities 𝐶𝑡(𝑢1
𝑡 , … , 𝑢𝑁

𝑡 ) computed for the entire portfolio 

are plotted in Fig. 10.9. Correlations between the perceived volatility in copula values and most 

of these disruption dates are plainly evident. 

 

 
a: Chinese stock bubble; b: U.S. bear market; c: Great Recession; d: Dubai debt standstill; e: European sovereign 

debt crisis; f: U.S. flash crash; g: U.S. Aug. 2011 decline; h: China crash; i: U.S. market selloff; j: cryptocurrency 

selloff. 

Figure 10.9 Empirical copula values for the portfolio of 26 domestic REITs and four market 

indices. 

 

10.1.3.2 Mahalanobis Distance 

 

The Mahalanobis distance, 𝑑 (Mahalanobis, 1936), is a generalization of a z-score in that it is 

designed to measure a (normalized) distance between an observation of a random variable and the 

mean value of a distribution (presumably the distribution governing that random variable). The 

Mahalanobis generalization extends the z-score concept to the case of an observation 𝑥 =
(𝑥1, … , 𝑥𝑁) on N random variables governed by a joint-probability distribution with a mean value 

𝜇 = (𝜇1, … , 𝜇𝑁) and covariance matrix 𝑆 as 

𝑑2 = (𝑥 − 𝜇)𝑆−1(𝑥 − 𝜇)′, (10.10) 



10. Risk Information and Management 

133  

where 𝑥′ denotes vector transpose. Equation (10.10) computes the square of the Mahalanobis 

distance. 

We apply this measure to the observations of the daily copulas computed in equation (10.4) as 

follows. Consider a window of 𝜏2 trading days and the vector 𝑪𝒕 = (𝐶𝑡−𝜏2+1, … , 𝐶𝑡) of computed 

copula values in that window. Let 𝑢𝑡 and 𝜎𝑡
2 denote the mean and variance computed from this set 

of copula values. Moving the window, we can compute a daily sequence of vectors with 

corresponding mean values and variances (e.g., 𝑪𝒕+𝟏 = (𝐶𝑡−𝜏2+2, … , 𝐶𝑡+1), 𝑢𝑡+1, 𝜎𝑡+1
2  ). We use 

the Mahalanobis measure to determine a distance between  𝑪𝒕+𝟏 and the mean value 𝑢𝑡 estimated 

for the distribution of 𝑪𝒕: 

𝑑𝑡
2(𝑢𝑡, 𝑪

𝒕+𝟏) =
1

𝜏2
∑ [

(𝐶𝑘+1 − 𝑢𝑡)
2

𝜎𝑡
2 ]

𝑡

𝑘=𝑡−(𝜏2−1)

 . (10.11) 

Employing a window length of 𝜏2 = 252 trading days (one trading year) for the copula data 

plotted in Fig. 10.9 gives the time series of Mahalanobis distances 𝑑(𝑢𝑡, 𝑪
𝒕+𝟏) = √𝑑2(𝑢𝑡, 𝑪𝒕+𝟏) 

shown in Fig. 10.10. The lower plot shows the Mahalanobis distance over a restricted range of y-

axis values to provide greater detail regarding the behavior around the value 𝑑 = 1.78 

 

 

 
a: Chinese stock bubble; b: U.S. bear market; c: Great Recession; d: Dubai debt standstill; e: European sovereign 

debt crisis; f: U.S. flash crash; g: U.S. Aug. 2011 decline; h: China crash; i: U.S. market selloff; j: cryptocurrency 

selloff. 

Figure 10.10 Mahalanobis distance for the empirical copula probabilities of Fig. 10.9. 

 

We use the Chow test to look for structural breaks in the time series of Mahalanobis distance 

computed in equation (10.11). Again, we employ a moving window of 𝑁 = 1,008 trading days 

 
78 The fact that the Mahalanobis time series is centered around 1.0 appears to be insignificant. 
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and vary 𝑁1  and 𝑁2 = 𝑁 −𝑁1 to test for early warning signal “strength” in searching for possible 

structural breakpoints in the time series 𝑑(𝑢𝑡, 𝑪
𝒕+𝟏). In our test, we vary from 𝑁2 = 882 to 𝑁2 =

126 in increments of 126 trading days (six trading months). (It is clearly preferable to maximize 

the warning time of a market downturn in order to adjust very large positions.) Because 𝑑(𝑢𝑡, 𝑪
𝒕+𝟏) 

is a function of the single variable 𝑡, a linear regression model with 𝐾 = 1 parameter (slope) is 

computed. As in the TLR-based early warning system, we use the hypothesis test to generate a 

probability value 𝑝(𝑡) of a structural break at each point tested. Again, we use a threshold value 

of 5% to declare the probable existence of a breakpoint and generate the hypothesis accept/reject 

function ℎ(𝑡). 

Fig. 10.11 shows the probability values 𝑝(𝑡) and hypothesis function ℎ(𝑡) for two choices of 

𝑁1 and 𝑁2. 79 The date axis indicates how the choice of 𝑁1 and 𝑁2 affects the total length of time 

over which potential breakpoints can be detected. For example, for 𝑁1 = 504, the earliest possible 

date for detecting a breakpoint is 01/09/2007, 504 trading days after 01/07/2005 (the first date for 

which the Mahalanobis distance is computable), and the last possible detection date is 07/25/2017. 

Consequently, when 𝑁1 = 504, we have enough data to look for potential breakpoints prior to the 

collapse of the Chinese stock bubble on 02/27/2007. When 𝑁1 = 630, we lose any view of that 

stock market event. 

 

 

 
a: Chinese stock bubble; b: U.S. bear market; c: Great Recession; d: Dubai debt standstill; e: European sovereign 

debt crisis; f: U.S. flash crash; g: U.S. Aug. 2011 decline; h: China crash; i: U.S. market selloff. 

Figure 10.11 Computed values for 𝑝(𝑡) and ℎ(𝑡) for 𝑑(𝑢𝑡, 𝐶
𝑡+1). 

 

Using Mahalanobis distance, we detect structural breaks in our portfolio commensurate with 

every major global-market upheaval during this time period except the Chinese stock bubble 

collapse and the U.S. bear market that began on 10/11/2007. It is important to run the early warning 

system with varied values of 𝑁1 and 𝑁2 to look for potential signals from “multiple views.” 

 

10.2 Asset Weighting 

 
79 These provided the best predictive performance. 
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To lay the groundwork for our discussion of risk budgets and component risk in section 10.3, we 

first compare asset weighting under different optimization schemes. Fig. 10.12 plots asset weight 

as a function of time for the historical optimizations of the MVP, TVP, M99, and T99 long-only 

domestic portfolios subject to a 4% turnover constraint. The MVP and TVP portfolios minimize 

portfolio standard deviation, whereas M99 and T99 minimize CVaR at the 99% quantile level (1% 

tail risk). The most significant difference in terms of which assets are weighted most heavily occurs 

between the global risk-minimizing portfolios (MVP, M99) and the tangent portfolios (TVP, T99), 

which maximize the Sharpe (TVP) or Sortino (T99) ratio. Whereas MVP and M99 weight the 

assets IRM, NLY, AMT, WY, CCI, and PSA most heavily, TVP and T99 concentrate weights on 

SBAC, AMT, and VTR and to a lesser degree on PSA, ESS, and CCI. The clearest differences 

between MVP and M99 are M99’s more abrupt and pronounced changes in asset weights. The 

same statement holds for the differences between TVP and T99. 

 

  
MVP M99 

  
TVP T99 

Figure 10.12 Asset weights as a function of time for the historical MVP, TVP, M99, and T99 

long-only domestic portfolio optimizations subject to a 4% turnover constraint. 

 

Fig. 10.13 plots asset weight as a function of time for the dynamic long-only optimizations of 

the MVP, TVP, M99, and T99 domestic portfolios subject to a 4% turnover constraint. Because a 

dynamic optimization samples a much larger statistical set of asset returns than does a historical 

optimization, the following changes in asset allocation occur: 

• Significant changes in asset weight occur more rapidly in the dynamic optimization. 

• Weight changes occur more abruptly an optimization that minimizes CVaR (M99) than for an 

optimization that minimizes standard error (MVP). 

• Some assets (e.g., IRM and AMT for MVP/M99) in the historical optimization are weighted 

much less significantly in the dynamic optimization. 

• Additional assets (e.g., AVB in TVP/T99) are weighted more significantly in the dynamic 

optimization. 

Fig. 10.14 illustrates the impact of asset-weight assignment for the TVP optimization subject 

to a 4% turnover constraint when applied to the domestic, international, and global portfolios using 

either the historical or dynamic optimization schemes. The main consideration here is the effect 

on the weight distribution of adding the international assets to the domestic portfolio. The results 
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cover the common time period 4/30/2018 through 12/18/2020. Over this period, the weights for 

the historically optimized domestic portfolio are concentrated on the REIT ETF SBAC, with 

secondary admixtures of ESS, AMT, and PLD. The weights for the historically optimized 

international portfolio are roughly equally split between LKREF and CDPYF. When the historical 

optimization is applied to the global portfolio, which combines the domestic and international 

assets, the two international REIT ETFs LKREF and CDPYF together comprise 25%–60% of the 

portfolio weight. The weighting of SBAC is greatly reduced until the beginning 

 

  
MVP M99 

  
TVP T99 

Figure 10.13 Asset weights as a function of time for the dynamic MVP, TVP, M99, and T99 

long-only domestic portfolio optimizations subject to a 4% turnover constraint. 

 

  
Historical domestic Dynamic domestic 

  
Historical international Dynamic international 

  
Historical global Dynamic global 

Figure 10.14 Asset weights as a function of time for the historical (left) and dynamic (right) 

TVP long-only domestic, international, and global portfolio optimizations subject to a 4% 

turnover constraint. 
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of the 2020 pandemic. In the case of dynamic optimization, the weighting of SBAC in the global 

portfolio is greatly reduced (in comparison to the domestic portfolio) over the entire time period, 

and the international assets LKREF and CDPYF, and to some extent JNRFY, play a consistently 

stronger role. 

We now consider long–short optimizations. Let 

𝑤−(𝑡) =∑min(𝑤𝑖(𝑡), 0)

𝑛

𝑖=1

  and   𝑤+(𝑡) =∑max(𝑤𝑖(𝑡), 0)

𝑛

𝑖=1

, (10.12) 

where 𝑤−(𝑡) is the total weight of shorted REITs in the portfolio. Because the portfolio is fully 

invested in REITs, 𝑤+(𝑡) = 1 − 𝑤−(𝑡). For long–short portfolios, the fractions 

𝑤𝑖(𝑡)

|𝑤−(𝑡)| + 𝑤+(𝑡)
, 𝑖 = 1, … , 𝑛, (10.13) 

provide the appropriate data for asset-weight plots that are analogs of the plots displayed for long-

only portfolios in Figs. 10.12–10.14. Using (10.13) reveals a remarkable similarity between the 

Jacobs et al. and Lo–Patel optimizations. Fig. 10.15 illustrates this similarity for the historical T95 

portfolios optimized via Jacobs et al. with 𝑠 = 0.04 and via Lo–Patel with 𝑙𝑒𝑣 = 0.04. The weight 

distributions are virtually identical. This also characterizes comparisons of their respective MVP, 

TVP, M95, M99, and T99 portfolios as long as 𝑠 = 𝑙𝑒𝑣 (at least over the range of values 

(∞, 0.04]). 
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Fig. 10.15 Asset weights as a function of time for the historical T95 long–short domestic 

portfolio optimizations via Jacobs et al. with 𝑠 = 0.04 (top) and via Lo–Patel with 𝑙𝑒𝑣 = 0.04 

(bottom). Asset colors are identical to those of Figs. 10.12 and 10.l3. 

 

Equally striking is the relatively constant value of the fraction 

𝑓short(𝑡) ≡
𝑤−(𝑡)

|𝑤−(𝑡)| + 𝑤+(𝑡)
, (10.14) 

which represents a relative total weight of shorted assets in the portfolio. Fig. 10.16 compares the 

plots of 𝑓short(𝑡) for the six historical long-short domestic portfolios (MVP through T99) 

optimized via Jacobs et al. with 𝑠 = 0.04 and via Lo–Patel with 𝑙𝑒𝑣 = 0.04 . Also shown are the 

quartile values, 𝑄1, 𝑄2, and 𝑄3, of the 𝑓short time series, which emphasize the high degree of 

similarity between the Jacobs et al. and Lo–Patel 𝑓short time series and quantify the variation over 

time of each series. In particular, the tangent optimizations, TVP, T95, and T99, develop an 

extremely similar 𝑄2 = 30%  total weight of shorted assets. In contrast, the total weight of shorted 

assets for the minimum-risk portfolios decreases slowly from 𝑄2 = 26% for MVP to 𝑄2 = 28% 

for M99. The 𝑓short(𝑡) time series show deviation from these constant values at the onset of the 

Great Recession. In addition, 𝑓short(𝑡) for MVP changes before the pandemic; after the pandemic 

“crash,” its 𝑓short value returns to the range of 26%. M95 and M99 exhibit similar, but less 

pronounced, changes. Interestingly, the tangent portfolio 𝑓short(𝑡) values are relatively unaffected 

by the pandemic. 

 

  

  
Fig. 10.16 Fractional weighting (10.14) of the shorted assets for the historical long–short 

domestic portfolios optimizations via Jacobs et al. with 𝑠 = 0.04 (top) and via Lo–Patel with 

𝑙𝑒𝑣 = 0.04 (bottom). Quartile values, 𝑄1, 𝑄2, and 𝑄3, for each time series are presented on the 

right. 

 

We now examine the effect of dynamic optimization on 𝑓short(𝑡). Fig. 10.17 plots 𝑓short(𝑡) 
for the six dynamic long–short domestic portfolios, MVP through T99, optimized via Lo–Patel 

with 𝑙𝑒𝑣 = 0.04. In contrast to the historic optimizations of Fig. 10.16, the statistics of the 𝑓short(𝑡) 
time series for the three minimum-risk dynamic portfolios are virtually identical, as are the 

statistics for the three dynamic tangent portfolios. The day-to-day variation around the median 
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value is larger for dynamic optimization than for historical. Under dynamic optimization, there is 

no hint of the pandemic in the tangent portfolio time series. Based on our results, it would appear 

that in the Jacobs et al. and Lo–Patel long–short optimizations, the minimum-risk optimizations 

seek to establish a constant median value for the fraction, f𝑠ℎ𝑜𝑟𝑡, of the total weight of the shorted 

assets in the portfolio. The same statement holds for the tangent portfolios. The value of this 

median value changes with the value of s (Jacobs et al.) or lev (Lo–Patel) and with historical 

versus dynamic simulation. Fig. 10.18 demonstrates the change in quartile values under changing 

values of 𝑙𝑒𝑣 for the dynamic Lo–Patel optimizations of the domestic portfolio. 

 

  
Fig. 10.17 Fractional weighting (10.14) of the shorted assets for the dynamic Lo–Patel long–

short domestic portfolio optimizations with 𝑙𝑒𝑣 = 0.04. Quartile values, 𝑄1, 𝑄2 and 𝑄3, for the 

time series are presented on the right. 

 

   
Fig. 10.18 Quartile values, 𝑄1, 𝑄2 and 𝑄3, for 𝑓short(𝑡) under changing values of 𝑙𝑒𝑣 for the 

dynamic Lo–Patel long–short domestic portfolio optimizations. 

 

10.3 Risk Budgets: Incremental and Component Risk 

 

A risk budget decomposes the total portfolio risk into the risk contribution of each component 

asset. It is the basis of risk budgeting, a portfolio-management technique with an optimization goal 

of ensuring that target risk-budget constraints are met for different assets, or classes of assets, in 

the portfolio. Changes in a portfolio alter investment risk. The change in risk accompanying the 

change in some factor in a portfolio is referred to as incremental risk. Measures of incremental 

risk aid in risk–return decision-making. Closely aligned with the concept of incremental risk is the 

concept of marginal risk as well as the decomposition of a portfolio into its constituent (or 

component) risks.80 Such a decomposition is useful for identifying both high and low sources of 

risk, setting position limits, determining capital requirements, etc. Portfolio standard deviation 

(Std), VaR, and CVaR are the most popular measures of risk used in such budgeting strategies. 

Std quantifies the contributions of each asset to the center risk of the portfolio, whereas VaR and 

CVaR quantify the contributions to tail risk. Chow and Kritzman (2001), Litterman (1996), 

 
80 The nomenclature for this incremental/marginal/component risk is inconsistent in the literature. 
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Maillard et al. (2010), and Peterson and Boudt (2008) have investigated the use of Std and VaR in 

risk budgeting.  Boudt  et al. (2013) reviews risk budgeting based on CVaR (also known as 

expected tail loss). 

Below, we illustrate these three risk-management measures by applying them to select 

portfolios of REIT ETF assets developed in Chapters 4 and 5. In our analysis, we use Std to 

quantify center risk and VaR as the proxy measure of tail risk. Thus, our discussion centers on 

incremental Std (IStd), marginal Std (MStd), component Std (ciStd),81 incremental VaR (IVaR), 

marginal VaR (MVaR), and component VaR (ciVaR). (See, e.g., Chapter 11 of Dowd (2005) for 

a further discussion of incremental and component risk.) 

 

10.3.1 Incremental, Marginal, and Component VaR 

 

In this section, we develop the mathematical concepts behind incremental, marginal, and 

component risk measures. For brevity, we use VaR as the illustrative risk measure. Developments 

for Std or CVaR can be inferred from the discussion here, and they are discussed in Bruder and 

Roncalli (2012), among other studies. Consider increments in VaR accompanying a change in the 

weighting of assets in a portfolio 𝑝. Let 𝒘 = {𝑤𝑖}, 𝑖 = 1, … , 𝑁 denote the position of a fully 

invested portfolio of 𝑁 assets. Let 𝜹 = {∆𝑤1, ∆𝑤2, … , ∆𝑤𝑁} denote a set of asset-weight changes. 

Consider the changed position �̂� = 𝒘 + 𝜹 = {𝑤1 + ∆𝑤1, 𝑤2 + ∆𝑤2, … , 𝑤𝑁 + ∆𝑤𝑛} ≡ {�̂�𝑖}, 

where the weights �̂�𝑖 also satisfy the required portfolio constraints (e.g., ∑ �̂�𝑖
𝑁
𝑖=1 = 1; 0 ≤ �̂�𝑖 ≤ 1 

for long-only investing; etc.). Then, the incremental value-at-risk (IVaR) at confidence level 𝛼, of 

the portfolio is the change 

IVaR𝛼(𝒘) =  VaR𝛼(�̂�) − VaR𝛼(𝒘) . (10.15) 

Note that this general definition (10.15) makes no assumption regarding the particulars or size of 

the change 𝜹.  

One common practice is to consider IVaR𝛼 as a result of adding or subtracting a single asset 

from the portfolio.82 A second practice is to consider (10.15) as the result of a “small” change in a 

single asset weight. If the position change 𝜹 is “small” (e.g., |∆𝑤𝑖| ≪ 1, 𝑖 = 1,… ,𝑁), then 

Taylor’s series, truncated to first order, gives a reasonably good approximation of (10.15): 

IVaR𝛼(𝒘) =  VaR𝛼(�̂�) − VaR𝛼(𝒘)  ≈∑
𝜕VaR𝛼(𝒘)

𝜕𝑤𝑖

𝑁

𝑖=1

∆�̂�𝑖 , (10.16) 

where ∆�̂�𝑖 = �̂�𝑖 − 𝑤𝑖 , 𝑖 = 1,… ,𝑁. The vector of derivatives, 

∇VaR𝛼(𝒘) =  {
𝜕VaR𝛼(𝒘)

𝜕𝑤1
,
𝜕VaR𝛼(𝒘)

𝜕𝑤2
, … ,

𝜕VaR𝛼(𝒘)

𝜕𝑤𝑁
} , (10.17) 

 
81 Although it is tempting to use the abbreviations “CoStd” and “CoVaR” for component Std and VaR, “CoVaR” is 

already commonly used to refer to the VaR of a financial system conditioned on institutions being under distress. 
82 VaR change as a result of removing or adding a single asset has been used in the literature either as the definition 

of incremental VaR or as the definition of marginal VaR. 
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is known as the gradient of VaR𝛼(𝒘) evaluated at the value 𝒘. The 𝑖th element of the gradient 

vector,  

MVaR𝛼
(𝑖)(𝒘) =

𝜕VaR𝛼(𝒘)

𝜕𝑤𝑖
 , (10.18) 

is known as the marginal value-at-risk (MVaR) with respect to asset i. As (10.16) shows, IVaR 

and MVaR values are inherently linked under small weight changes in the portfolio. 

As a function operating on a random variable 𝑋 (e.g., the return on a portfolio), VaR𝛼(𝑋)  has 

the property of linear positive homogeneity; specifically, if 𝜆 > 0 is a positive constant, then 

VaR𝛼(𝜆𝑋) = 𝜆VaR𝛼(𝑋). Loosely speaking, this property states, for example, that if you double 

the size of your investment, then you double your risk. Because the return 𝑟𝑝(𝑡) of a portfolio is a 

linear sum of the weighted returns of each asset, 𝑟𝑝(𝑡) = ∑ 𝑤𝑖(𝑡)𝑟𝑖(𝑡)
𝑁
𝑖=1 , this linear homogeneous 

property holds relative to the weights; that is, VaR𝛼(𝜆𝑟𝑝,𝑡) = VaR𝛼(∑ 𝜆𝑤𝑖(𝑡)𝑟𝑖(𝑡)
𝑁
𝑖=1 ) =

𝜆VaR𝛼(𝑟𝑝(𝑡)). Consequently, a theorem by Euler83 for linear homogeneous functions ensures that 

VaR𝛼(𝑟𝑝(𝑡)) =∑
𝜕VaR𝛼(𝑟𝑝(𝑡))

𝜕𝑤𝑖(𝑡)
𝑤𝑖(𝑡)

𝑁

𝑖=1

= ∑MVaR𝛼
(𝑖)(𝒘(𝑡)) 𝑤𝑖(𝑡)

𝑁

𝑖=1

 . (10.19) 

Equation (10.19) expresses the VaR of a portfolio as a sum of component risks. Each element of 

this sum is referred to as a component VaR (ciVaR): 

c𝑖VaR𝛼
(𝑖)
(𝑟𝑝(𝑡)) = MVaR𝛼

(𝑖)(𝒘(𝑡)) 𝑤𝑖(𝑡) . (10.20) 

Thus, the concepts of ciVaR and MVaR values are inherently linked. Using (10.20), equation 

(10.19) can be rewritten as  

1 =∑
c𝑖VaR𝛼

(𝑖)
(𝑟𝑝(𝑡))

VaR𝛼(𝑟𝑝(𝑡))

𝑁

𝑖=1

, (10.21) 

which represents the ciVaR for each asset i as a fraction of the total portfolio VaR. 

Gourieroux et al. (2000) consider the CVaR version of (10.19) (replacing VaR𝛼(𝑟𝑝(𝑡)) with 

CVaR𝛼(𝑟𝑝(𝑡))). Each element of the sum then becomes a component CVaR (ciCVaR). They show 

that 

c𝑖CVaR𝛼
(𝑖)
(𝑟𝑝(𝑡)) = −𝐸 [𝑤𝑖(𝑡)𝑟𝑖(𝑡)|𝑟𝑝(𝑡) = −VaR𝛼 (𝑟𝑝(𝑡))] . (10.22) 

Equation (10.22) states that c𝑖CVaR𝛼
(𝑖)
(𝑟𝑝(𝑡)) is (the negative of) the asset’s expected contribution 

to 𝑟𝑝(𝑡) when the portfolio return is equal to (the negative of) the portfolio’s VaR.84 

 

10.3.2 Computing VaR, IVaR, MVaR, and ciVaR 

 

 
83 One of many theorems developed by the prolific 18th-century mathematician Leonhard Euler. 
84 All the negative signs in (5.22) stem from the fundamental definition of VaR𝛼as having a positive value to represent 

a loss. 
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For a portfolio, VaR𝛼(𝒘(𝑡)) is generally estimated from a distribution of synthetic portfolio 

returns, 𝑟𝑝,1(𝑡),… , 𝑟𝑝,𝑚(𝑡). If computed from historical data, VaR𝛼(𝒘(𝑡)) is estimated from the 

time series of synthetic portfolio returns, 𝑟𝑝(𝑡 − 𝑚),… , 𝑟𝑝(𝑡 − 1): 

𝑟𝑝,𝑘(𝑡) = 𝑟𝑝(𝑡 − 𝑘) =∑𝑤𝑗(𝑡) 𝑟𝑗(𝑡 − 𝑘)

𝑁

𝑗=1

 for   𝑘 = 1, … ,𝑚 , (10.23) 

where 𝑟𝑗(𝑡 − 𝑘) is the historical return of asset 𝑗 at time 𝑡 − 𝑘 and {𝑤𝑗(𝑡)} are the weights applied 

to the portfolio assets at time t. If computed using Monte-Carlo simulations,  

𝑟𝑝,𝑘(𝑡) =∑𝑤𝑗(𝑡) 𝑟𝑗,𝑘(𝑡)

𝑁

𝑗=1

 for   𝑘 = 1,… ,𝑚 , (10.24) 

where 𝑟𝑗,𝑘 is the generated return of asset j during the kth Monte-Carlo simulation. There are 

generally two classes of methods for estimating VaR𝛼(𝒘(𝑡)) (see (3.25)) from the distribution of 

synthetic returns. The most straightforward, if the window size 𝑚 is sufficiently large, is to 

compute the VaR value as the negative, 

VaR𝛼(𝒘(𝑡)) = − 𝑟𝑝,𝛼(𝑡) , (10.25) 

of the 1 − 𝛼 quantile value of the return distribution. Otherwise, parametric methods can be used 

by employing a distribution model (e.g., Gaussian), particularly one (e.g., log-normal, generalized 

Pareto) that allows for a more realistic fit to the fat-tailed nature of the loss tail of the return 

distribution. If the form of VaR𝛼(𝒘) is known analytically for the distribution, it can then be 

estimated using the parameters that provide the best fit to the distribution of returns 

𝑟𝑝,1(𝑡), … , 𝑟𝑝,𝑚(𝑡). For example, if the asset returns in (10.23) or (10.24) are normally distributed 

with mean vector 𝝁 and covariance matrix 𝚺, then (Haugh et al., 2017; Boudt et al., 2008; McNeil 

et al., 2005) 

VaR𝛼(𝒘) = −𝝁
T 𝒘 − 𝑧N(𝛼)√𝒘T 𝚺𝒘  , (10.26) 

where 𝑧N(𝛼) = √2erf
−1(2𝛼 − 1) is the 1 − 𝛼 quantile value of the normal distribution, 𝑁(0,1). 

Some parametric estimators include higher-order moments to improve tail estimates of values for 

VaR. For example, Zangari (1996) and Favre and Galeano (2002) provide a VaR estimate using 

the Cornish–Fisher expansion to include skewness, 𝑆, and kurtosis, 𝐾, through third order in the 

probabilist’s Hermite polynomials. The result of their estimate leads to the form (10.26), but with 

𝑧N(𝛼) → 𝑧CF(𝛼), 

VaR𝛼(𝒘) = −𝝁T 𝒘 − 𝑧CF(𝛼)√𝒘T 𝚺𝒘  , (10.27a) 

 where 

𝑧CF(𝛼) = 𝐻𝑒1(𝑧N(𝛼)) +
𝐻𝑒2(𝑧N(𝛼))𝑆

6
+
𝐻𝑒3(𝑧N(𝛼))𝐾

24

−
[2𝐻𝑒3(𝑧N(𝛼)) + 𝐻𝑒1(𝑧N(𝛼))]𝑆

2

36
 

(10.27b) 
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= 𝑧N(𝛼) +
(𝑧N(𝛼)

2 − 1)𝑆

6
+
(𝑧N(𝛼)

3 − 3𝑧N(𝛼))𝐾

24
−
[2𝑧N(𝛼)

3 − 5𝑧N(𝛼)]𝑆
2

36
 . 

The parametric estimates (10.26) and (10.27) explicitly show that the covariance structure (which 

captures both volatility and correlation effects) of the asset returns impacts VaR value (and 

consequently IVaR, MVaR, and ciVaR values85). 

Note that estimation of VaR can be susceptible to outlier values, particularly for estimates, 

such as (10.27), that use higher moments (Cont, Deguest, and Scandolo, 2007). Methods for 

cleaning outliers, such as winsorization (see, e.g., Boudt, Peterson, and Croux, 2008), can be 

employed to improve robustness. 

Computation of IVaR from the general form (10.15) can be performed with any of these VaR-

estimation methods. Equation (10.15) involves evaluating differences of the form VaR𝛼(�̂�) −

VaR𝛼(𝒘), in which both the changed portfolio weights �̂�𝑖 and the original weights 𝑤𝑖 must satisfy 

portfolio constraints. One practical approach is to distribute the weight change proportionally to 

the risk represented by each individual asset, giving less risky assets a greater portion of the weight 

change, that is, proportionally to asset ciVaR values. This weight distribution technique is the basis 

of the risk budgeting discussed in section 10.2.3. 

For small weight changes, computation of IVaR from (10.16) requires estimation of the MVaR 

values. This can be done through numerical derivatives, such as the first-order derivative estimate 

MVaR𝛼
(𝑖)(𝒘) ≈

VaR𝛼(�̂�
(𝑖)) − VaR𝛼(𝒘)

∆𝑤𝑖
 , (10.28) 

where �̂�(𝑖) = {𝑤1, … , 𝑤𝑖−1, 𝑤𝑖 + ∆𝑤𝑖, 𝑤𝑖+1, … , 𝑤𝑁}. The MVaR𝛼
(𝑖)

 values in (10.19) may be 

computed under, for example, a 1% change in each respective weight, ∆𝑤𝑖 = 0.01, 𝑖 = 1,… ,𝑁 

(irrespective of the values of the small changes, ∆�̂�𝑖, to be used in evaluating IVaR𝛼(𝒘) in 

(10.16)). However, numerical estimation via (10.28) is prone to roundoff error as ∆𝑤𝑖 → 0. 

Generally, the more robust approach is to use a parametric method to estimate values of 

∇VaR𝛼(𝒘). From either (10.26) or (10.27), we have 

∇VaR𝛼(𝒘) = 𝝁 + 𝑧(𝛼)
 𝚺𝒘

√𝒘T 𝚺𝒘
  , (10.29) 

where 𝑧(𝛼) = 𝑧N(𝛼) or 𝑧(𝛼) = 𝑧CF(𝛼), respectively. Equation (10.29) can be used to provide 

parametric estimates for MVaR𝛼
(𝑖)(𝒘) (see (10.18)), IVaR𝛼(𝒘) (see (10.16)), and c𝑖VaR𝛼

(𝑖)(𝒘) (see 

(10.20)). 

For the case in which IVaR is to be computed as a result of the removal (similarly for the 

addition) of a single asset, Mina and Xiao (2001) develop the parametric estimate 

 
85 An asset with a large position size may have a small ciVaR due to volatility or correlation effects; similarly, an asset 

with large volatility may have a small ciVaR due to position size or correlation effects. Analogous statements might 

hold for assets with small position or volatility. 
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 VaR𝛼(𝑟𝑝) − VaR𝛼(𝑟𝑝 − 𝑟𝑗)

= [VaR𝛼
2 (𝑟𝑝 − 𝑟𝑗) + VaR𝛼

2 (𝑟𝑗) + 2𝜌 VaR𝛼(𝑟𝑗)VaR𝛼(𝑟𝑝 − 𝑟𝑗)]
1
2

− VaR𝛼(𝑟𝑝 − 𝑟𝑗) 

= VaR𝛼(𝑟𝑗)
1

𝜉
[√𝜉2 + 2𝜌𝜉 + 1 − 1] . 

(10.30) 

Here, 𝑟𝑝 − 𝑟𝑗 represents the portfolio return without asset j; VaR𝛼(𝑟𝑗) is the VaR value for the asset 

return 𝑟𝑗; VaR𝛼(𝑟𝑝 − 𝑟𝑗) is the VaR value for the portfolio return computed without asset j; 𝜌 is 

the correlation between asset j and the rest of the portfolio 𝑟𝑝 − 𝑟𝑗; and 𝜉 =

VaR𝛼(𝑟𝑗) VaR𝛼(𝑟𝑝 − 𝑟𝑗)⁄ . 

If Std is used as the risk measure, then computations for Std, MStd, and ciStd are (Bruder and 

Roncelli, 2012) 

Std(𝒘) = √𝒘T 𝚺𝒘 , MStd(𝒘) =
 𝚺𝒘

√𝒘T 𝚺𝒘
  , c𝑖Std(𝑖)(𝒘) =  𝑤𝑖(𝑡)

 (𝚺𝒘)𝒊

√𝒘T 𝚺𝒘
  . (10.31) 

 

10.3.3 Portfolio Results 

 

Component risk. We start with a discussion of the results for the computation of ciStd and VaR𝛼. 

Unless noted otherwise, all VaR𝛼 computations are performed at the 95% quantile level (𝛼 =

0.95). Because component risk (see (10.20) and (10.31)) is a product of an asset’s weight with its 

marginal risk, computing component risk for an equal-weighted portfolio gives an indication of 

the inherent risk provided by each asset, whereas computing component risk for a weight-

optimized portfolio gives an indication of the actual risk of each asset. It is useful to evaluate 

inherent risk when considering the addition of a new asset to a portfolio. We contrast these two 

approaches by considering the long-only domestic portfolios: EQW, MVP subject to 𝐶TO = 0.04, 

and TVP subject to 𝐶TO = 0.04. We consider both center risk (ciStd) and tail risk (ciVaR). 
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Figure 10.19 Risk-budget ciStd (top) and ciVaR (bottom) values as a function of time for the 

26 assets of the long-only domestic portfolio EQW. The top-down ordering of assets is the same 

in both plots. 

 

When portfolio managers use risk budgeting, they are interested primarily in the component 

risk of each asset measured over a recent time interval (i.e., the risk budgets). Fig. 10.19 provides 

a graphical view of the change in risk budgets, measured in terms of ciStd and ciVaR, as a function 

of time for the long-only domestic portfolio EQW. The plots are qualitatively similar. Using 

boxplots showing minimum, 𝑄1, 𝑄3, and maximum values, Fig. 10.20 presents the statistical 

differences between the time variations of ciStd and ciVaR over this 15-year period. The average 

contributions of assets vary from 2.2% to 5.0% for ciStd and 2.4% to 4.9% for ciVaR. The IQRs, 

which vary from 0.05% to 1.1% for ciStd and 0.12% to 1.1% for ciVaR, and the maximum–

minimum differences, which vary from 0.56% to 7.6% for ciStd and 0.53% to 6.2% for ciVaR, 

provide perspective on asset ciVaR variation over time. The assets are ordered from left to right 

by decreasing 𝑄2 value. Between ciStd and ciVaR, there are minor local variations in the ordering  

 

 

 
Figure 10.20 Boxplot statistics of the risk budgets of ciStd and ciVaR for the long-only domestic 

portfolio EQW. (The red line indicates the value 1/26; × indicates minimum and maximum 

values; − indicates 𝑄1 and 𝑄3 values.) 
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of the assets. With 26 assets in the portfolio, the overall average value of 1/26 = 0.385 (red line) 

can be used to divide the assets into two classes, that is, greater and lesser risk contributors. These 

risk measures identify the same sets of assets in each class. Three assets in particular, SBAC, AMT, 

and CCI, show the greatest change in ciVaR over time, changing from large-risk contributors 

during 2018 to low-risk contributors for the remaining 14 years. 

In contrast to Fig. 10.20, Fig. 10.21 presents the component risk of each asset computed over 

the entire 15-year period. With the exception of SBAC under ciVaR, the ordering is fairly 

consistent with that presented in Fig. 10.20. Also plotted are the 𝑄1  and 𝑄3 values from Fig. 10.21, 

which show how the 15-year values align with the IQR ranges. Alignment is generally good, with 

the exception of the three assets, SBAC, AMT, and CCI, whose component risk changes 

considerably over the time period. 

 

 

 
Figure 10.21 Risk-budget ciStd (top) and ciVaR (bottom) values for the long-only domestic 

portfolio EQW computed for the entire 15-year period. (The red line indicates the value 1/26; 

the dashed values are the 𝑄1  and 𝑄3 values from Fig. 10.20.)  
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Figure 10.22 Risk-budget ciStd values as a function of time for the 26 assets of the MVP long-

only domestic portfolio optimized subject to a 4% turnover constraint. Asset colors are identical 

to those of Fig. 10.19. 

 

We now consider the actual component risk of each asset in the optimized portfolios. To 

provide a contrast with Figs. 10.19–10.21, we consider component risk for the MVP and TVP 

long-only domestic portfolios optimized subject to a 4% daily turnover constraint. Because the 

risk measure in both of these optimizations is portfolio variance, we concentrate on asset ciStd 

values and consider ciVaR values secondarily. Fig. 10.22 plots a graphical view of the change in 

ciStd values as a function of time for this portfolio. Because asset weights differ drastically, both 

from each other and over time, ciStd values are dramatically different from those displayed in Fig. 

10.19 for the EQW portfolio. Now, CCI, IRM, AMT, NLY, and PSA dominate the risk over long 

periods of time, whereas they are minimal inherent risk contributors in the EQW portfolio, which 

is exactly why they receive heavy weightings in the minimum-variance optimization of MVP. The 

results provide insight into how the mean-variance optimization adjusts to changing market 

conditions. Whereas the ciStd changes for the equal-weighted portfolio show a distinction between 

2008 and the remaining years, the ciStd changes for the MVP fall into roughly six time periods: 

2008, 2009–2011 (Great Recession), 2011–2016, 2017–2019(Q2), 2019(Q3)–2020(Q1), and 

2020(Q2–Q4) (COVID-19 pandemic). Fig. 10.23 summarizes the minimum, maximum, 𝑄1 , and 

𝑄3 values for ciStd for each asset over this period. (For comparison, the ciVaR is also shown. The 

plots are very similar.) Assets are presented from left to right in order of decreasing maximum 

value. The large IQRs and/or maximum−minimum values for the assets NLY, IRM, PSA, and 

AMT reflect the time-varying values shown in Fig. 10.22. 

 

 

 
Figure 10.23 Boxplot statistics of risk-budget ciStd and ciVaR values for the MVP long-only 

domestic portfolio optimized subject to a 4% turnover constraint. (The red line indicates the 

value 1/26; × indicates minimum and maximum values; − indicates 𝑄1  and 𝑄3 values.) 
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It is instructive to examine the correlation between asset weights and asset component risk 

values under a historical long-only investing scheme. Clearly, if an asset has very little to no weight 

in a portfolio, it will have little to no component risk; similarly, an asset with a large weight will 

have a larger component risk. In addition, the portfolio-optimization techniques we use here seek 

to  

 

 

Figure 10.24 The difference, asset weight – asset ciStd, for two consecutive dates for the MVP 

long-only domestic portfolio optimized subject to a 4% turnover constraint. 

 

 

 

 

Figure 10.25 ciStd values as a function of time for the 26 assets of the TVP long-only domestic 
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portfolio optimized subject to a 4% turnover constraint (top). Asset colors are identical to those 

of Figs. 10.19 and 10.22. Boxplot statistics of asset ciStd (middle) and ciVaR95 (bottom) values. 

(× indicates minimum and maximum values; − indicates 𝑄1  and 𝑄3 values.) 

 

reduce risk by reducing the weights of riskier assets. For the (nonoptimizing) equal-weighted 

domestic portfolio, each asset weight is 1/26; thus, the statistical differences between each asset’s 

ciStd and weight can be inferred directly from the difference between the red line and the boxplot 

values presented in Fig. 10.20.  We contrast these results with those of the MVP portfolio. Fig. 

10.12 displays the asset weights versus time for the MVP portfolio. The differences between asset 

weight and the ciStd values plotted in Fig 10.22 are very subtle. Fig. 10.24 emphasizes this by 

plotting the difference 𝑤𝑖(𝑡) − c𝑖Std
(𝑖)(𝑡);   𝑖 = 1,… , 26 for two successive days, 3/11/2020 and 

3/12/2020, at the onset of the pandemic-related market disruption. Differences are ≤ ±0.6%. 

We contrast the component risk of the tangent portfolio optimization, TVP, with that of both 

the minimum-risk portfolio optimization, MVP, and the equal-weighted portfolio, EQW. Fig. 

10.25 displays asset ciStd versus time and boxplot statistics for the asset ciStd and ciVaR values 

for the TVP long-only domestic portfolio subject to a 4% turnover constraint. The SR-maximizing 

tangent portfolio optimizes assets very differently than the minimum mean-variance portfolio. The 

EQW portfolio ciStd and ciVaR values shown in Fig. 10.20 indicate that NLY, IRM, CCI, AMT, 

SBAC, WY, O, PSA, MAA, and ESS are the 10 lowest-risk-contributing assets. The MVP and 

TVP optimizations weight these differently over this 15-year period. Although all 10 of these 

assets play a nontrivial role in the MVP portfolio (Fig. 10.22), the greatest prominence is given to 

NLY, IRM, and AMT. In contrast, only six of these play a nontrivial role in the TVP portfolio 

(Fig. 10.25), with the greatest prominence given to SBAC. 

 

 

Figure 10.26 Boxplot statistics of the Sharpe ratios for the individual assets in the domestic 

portfolio over the time period 12/19/2007 through 12/18/2020. (× indicates minimum and 

maximum values; − indicates 𝑄1 and 𝑄3 values.) 

 

To illustrate the effect of TVP optimization, Fig. 10.26 displays the boxplot statistics of the 

SRs of the individual assets over this time period. (These would be the asset SRs in an equal-

weighted portfolio.) For consistency, the SRs are computed using the same 2,016-day moving 

window used in the MVP and TVP optimizations. Comparison of Fig. 10.26 with Fig. 10.25 

demonstrates that the TVP optimization gives greater weight to those assets having larger SRs 

over this period. 
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Incremental VaR. Dowd (2005) classifies IVaR performance into three categories, which we 

summarize in terms of the discussion here. 

(1) High IVaR: An asset with a large positive IVaR value indicates that the increased weight (i.e., 

“increased position”) of this asset in the portfolio adds substantially to portfolio risk. If the 

asset position in the portfolio increases further, the IVaR associated with this asset will likely 

grow at an increasing rate. 

(2) Moderate IVaR: An asset with a moderate IVaR value indicates that the increased position of 

this asset adds moderately to portfolio risk. However, as the asset position continues to grow, 

its IVaR will likely grow at an increasing rate. 

(3) Negative IVaR: An asset with a negative IVaR value indicates that the increased position of 

this asset reduces overall portfolio risk; that is, the new position is a natural hedge against the 

existing portfolio. However, if the relative position of this asset in the portfolio grows too large, 

its hedging ability will likely be diminished by decreasing portfolio diversification, and 

ultimately the IVaR associated with this increasing position must become positive. There is 

thus an optimal value of weight at which such an asset provides maximum hedging effect (a 

“best hedge”). 

We illustrate these categories of performance with two computations of IVaR: (i) the incremental 

change in portfolio VaR as a result of the daily weight changes in the portfolio and (ii) the 

incremental change in portfolio VaR that would accompany the removal of each asset. 
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Figure 10.27  VaR95(𝑟𝑝(𝑡)) and IVaR95(𝑟𝑝(𝑡)) for the EQW (top) long-only domestic portfolio 

and the MVP (middle) and TVP (bottom) long-only domestic portfolios optimized subject to a 

4% turnover constraint. 

 

Fig. 10.27 shows the daily values of portfolio VaR86 and the daily incremental change in VaR, 

[VaR95(𝑟𝑝(𝑡)) − VaR95(𝑟𝑝(𝑡 − 1))] VaR95(𝑟𝑝(𝑡 − 1))⁄ ) over the 15-year time period for the 

domestic portfolio using (i) the EQW strategy, (ii) the MVP optimization subject to a 4% turnover 

constraint, and (iii) the TVP optimization subject to a 4% turnover constraint. VaR values are 

steadiest for the MVP portfolio and most variable for TVP. The EQW and MVP portfolios show 

the strongest correlation with market events: with the rising VaR during the 2008 financial crisis, 

with the decreasing VaR over Q3 and Q4 of 2016, and with the increasing VaR during the 2020 

pandemic. The first two trends are more protracted for the TVP portfolio than for the others. IVaR 

is consistently higher (more negative) for the TVP portfolio and consistently lowest (least 

negative) for MVP. 

Fig. 10.28 shows the percent change, [VaR95(𝑟𝑝) − VaR95(𝑟𝑝 − 𝑟𝑗)] VaR95(𝑟𝑝)⁄ , in IVaR(𝑖) 

computed using (10.30) that results from removing each asset 𝑖 from the EQW portfolio. The width 

of each color band represents the percent change in VaR95(𝑟𝑝) produced by removing that asset. 

Note that a positive change in Fig. 10.28 indicates that removal of the asset decreases the portfolio 

 

 
Figure 10.28 Percent change in VaR95(𝑟𝑝(𝑡)) produced by removing each asset in the long-only 

domestic EQW portfolio. The width of each band indicates the percent change. Asset colors are 

identical to those of Figs. 10.19, 10.22, and 10.25. 

 

VaR or that, conversely, adding the asset increases the portfolio VaR. This sign convention allows 

for direct association with Dowd’s high, moderate, and negative categories. In terms of Dowd’s 

scheme, an overall classification of the assets from the EQW portfolio might be the following: 

• high: SLG, VNO, PLD, HST, MAC, REG, DRE 

• moderate: AVB, BXP, ARE, EQR, UDR, SPG, VTR, HCP, SPG 

• negative: SBAC, IRM, AMT, NLY, CCI, WY, O, PSA, MAA, ESS 

These results confirm that SBAC, IRM, AMT, NLY, and CCI are the principal risk-diversifying 

 
86 Following convention, VaR is plotted as a negative value for losses in Fig. 10.27 rather than as the positive value 

defined in (3.21). 
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assets (in each case, adding the asset decreases the portfolio VaR). No asset in Dowd’s high 

category produces as strong a magnitude of VaR change as do the main risk diversifiers. Note that 

Dowd’s asset classification varies over time. For example, SBAC is a strong risk diversifier over 

the 12-year period 2010–2020 and a strong risk contributor (high category) during 2008, and other 

asset IVaR values (e.g., CCI, PSA, ARE) change their sign over time. Because all the assets in 

EQW have equal weight, Fig. 10.28 also sheds light on possible hedging strategies, for example, 

by balancing the addition of a risk-contributing asset, such as PLD, with the removal of an equal 

risk-contributing asset, such as SLG. 

 

  

Figure 10.29 Time series of IVaR values produced by the daily removal of each asset in the 

MVP (left) and TVP (right) long-only domestic portfolio optimizations subject to a 4% turnover 

constraint. The width of each band indicates the value in percent. Assets colors are identical to 

those of Fig. 10.28. 

 

Fig. 10.29 plots the IVaR values that would result from removing individual assets each day 

from the MVP and TVP long-only domestic portfolio optimizations subject to a 4% turnover 

constraint. The  IVaR plot for the MVP portfolio reemphasizes that this portfolio concentrates on 

those assets that produce the greatest risk diversification. One exception is the presence of the risk 

contributor SBAC starting in 2016. For the TVP portfolio, the exception is more pronounced: 

SBAC, which represents the largest component of VaR in the portfolio, is a positive risk 

contributor for most of the period. The same is true for VTR in 2008. Fig. 10.29 shows that the 

TVP optimization balances IVaR more effectively than MVP because critical assets under TVP 

are weighted such that their removal would generate opposite-signed IVaR values over the 15-year 

period. This rarely occurs for assets under MVP optimization. 

 

10.4 Factor Analysis 

 

It can be difficult to determine why a portfolio is performing better or worse than the market. Factor 

analysis enables an investor to pinpoint factors (the underlying exposures) that are contributing most 

strongly to the observed return performance. The principal objective addressed by a financial factor 

model can be described as follows: 

“Given a time series of returns for a set of assets, quantify the relationship between the 

observed asset returns and the time series of the returns (or ‘scores’) of a set of latent factors 

that jointly (‘in common’) influence the asset returns.” 

Inherent in the usefulness of factor analysis is the assumption that the number of these common 

latent factors is much smaller than the number of assets in the portfolio. In practice, financial 

factor analysis usually assumes a multilinear relationship between the portfolio return and the 

factor returns, resulting in a relative weight of influence (or “loading” or “beta”) of each common 
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factor on the return of each asset, as well as an estimate of the portion of the return behavior (the 

latent error) that remains unexplained by the common factors. The most familiar model is the 

single-factor capital asset pricing model (CAPM) developed by Sharpe (1970): 

𝑟𝑖𝑡 = 𝑟𝑓𝑡 + 𝛽𝑖𝑟𝑚𝑡 + 𝜖𝑖𝑡, 𝑖 = 1,… ,𝑁 , 𝑡 = 1,… , 𝑇 .  

Here, 𝑟𝑖𝑡 is the return of asset 𝑖;  𝑟𝑓𝑡 is the risk-free rate; the single factor, 𝑟𝑚𝑡, is the excess (relative 

to the risk-free rate) return of the market; 𝛽𝑖 is the loading of asset 𝑖 on the excess market return; 

and 𝜖𝑖𝑡 is the latent error for asset 𝑖.87 Note that the loadings are modeled as time independent. 

CAPM performs a factor analysis assuming a single factor (e.g., a market index) that represents 

the returns of a market. If 𝑟𝑖𝑡, on the left-hand side, is the return of a managed portfolio, then a 

large value of 𝛽𝑖 indicates that the portfolio return is tracking the market return well. If 𝛽𝑖 is small, 

then other factors are influencing performance, and a multifactor model is needed. 

Let 𝒓𝑡 = (𝑟1𝑡, . . . , 𝑟𝑁𝑡)
T  be a vector of returns at time 𝑡 of 𝑁 assets with (time-averaged) mean 

vector 𝝁 = (𝜇1, . . . , 𝜇𝑁)
T. Then, the general multilinear factor model is 

𝒓𝑡 = 𝝁 + 𝜷𝒇𝒕 + 𝝐𝑡, 𝑡 = 1,… , 𝑇, (10.32) 

where 𝒇 = (𝑓1𝑡, . . . , 𝑓𝑚𝑡)
T, 𝑚 < 𝑁, is the vector of returns at time 𝑡 for each of 𝑚 common 

factors; 𝜷 = {𝛽𝑖𝑗} is the matrix of loadings, with 𝛽𝑖𝑗 being the load of asset 𝑖 on the 𝑗th factor; 

and 𝝐𝒕 = (𝜖1𝑡, . . . , 𝜖𝑁𝑡)
T is the vector of latent errors.  

Conceptually, one would like to perform the following analysis: “Here are the daily returns for 

a managed portfolio; run some analysis to identify a set of factors driving those returns, as well as 

the loadings and latent errors in model (10.32).” Unfortunately, there is not enough information in 

the daily returns of a single portfolio to do so. There are, therefore, two approaches to using factor 

models. In the first, as in the CAPM model or the familiar Fama–French (1993, 2015) three- and 

five-factor models, the number of factors and factor returns are known, and the loadings are 

computed via regression on (10.32). This approach addresses the following question: “The set of 

factors {𝑆} is believed to be significant in setting market value. How much of the performance of my 

portfolio can be explained by the return performance of these specific factors?” In the second 

approach, as in the BARRA factor model (see Grinhold and Kahn, 2000), only the number of 

factors, 𝑚, is assumed to be known. To use this approach, one has to provide return data on a larger 

set of “potentially contributing” attributes. Thus, the central question addressed by this second 

approach is the following: “Is the performance of this attribute data being significantly driven by 

𝑚 latent factors?”  The factor analysis will then estimate the loadings, latent errors, and returns for 

𝑚 factors that drive relationships in this return data set. In the second approach, the identity of 

each latent factor can be surmised only by examining the attribute loadings on the factor. Because 

the number of factors is unknown, the factor analysis can be run several times assuming different 

values for 𝑚. 

Implementing the second approach involves the following additional assumptions. If the latent 

errors are assumed to be uncorrelated with each other (i.e., ∑ 𝜖𝑖𝑡𝜖𝑗𝑡 = 0,   for  𝑖 ≠ 𝑗𝑡 ), then their 

covariance matrix is diagonal: 

 
87 In the CAPM as originally derived by Sharpe, it is assumed that 𝜖𝑖𝑡 = 0, 𝑖 = 1,… , 𝑁. 
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Cov(𝝐𝑡) = 𝑫 = diag{𝜎1
2, . . , 𝜎𝑁

2} . (10.33) 

If the common factors are assumed to be uncorrelated with the latent errors (i.e., 

∑ 𝑓𝑎𝑡𝜖𝑗𝑡 = 0,   𝑎 = 1,… ,𝑚;   𝑗 = 1,… ,𝑁𝑡 ), the covariance of the return series 𝒓𝑡 is then 

Cov(𝒓𝑡) = 𝜷𝜮𝒇𝜷
T +𝑫 , (10.34) 

where 𝜮𝒇 = 𝒇𝒕𝒇𝒕
T is the covariance matrix of the common factors. If the factors are assumed to be 

uncorrelated and their returns are appropriately normalized (i.e., ∑ 𝑓𝑎𝑡𝑓𝑏𝑡 = 𝛿𝑎𝑏 𝑡 ), then 𝜮𝒇 = 𝐈 

(the 𝑚 ×𝑚 identity matrix) and 

Cov(𝒓𝑡) = 𝜷𝜷T +𝑫 . (10.35) 

Given the number 𝑚 of factors, values for 𝛽𝑖𝑗 and 𝜎𝑖
2,   𝑖 = 1, … ,𝑁,   𝑗 = 1,… ,𝑚 can be obtained from 

a maximum-likelihood analysis of (10.35). The factors 𝒇 can then be estimated using cross-

sectional regression on (10.32) for each time 𝑡.88 

Thus, (10.32) captures the movement of the portfolio return through a predictive linear 

dependence, 𝝁 + 𝜷𝒇𝒕, on the factor returns combined with a factor-independent random 

component 𝝐𝑡. Equally important, (10.35) describes what fraction of the variability of the portfolio 

return, Cov(𝒓𝑡), results from the variability of the factor loadings, 𝜷𝜷T, and what fraction results 

from the latent random component, 𝑫. 

We illustrate the second approach by applying it to the returns of the TVP long-only domestic portfolio 

subject to a 4% turnover constraint. We consider the following as a set of exogenous attributes that 

may be influenced by the same common factors as our REIT portfolio:  the stock ETF SPY, the 

REIT market index WD,89 and the 13 market-representative assets listed in section 2.4. These 13 

assets are representative of the equity, fixed-income, cash, currency, and commodity classes. The price 

data for each asset covering the period 12/18/2007 through 12/17/2020 was obtained from 

Bloomberg Professional Services. We consider an additional set of endogenous attributes that 

consists of the one-day lagged returns of the 26 REIT assets in the domestic portfolio and the one-

day lagged return of the example portfolio itself. In part, the purpose of adding the endogenous 

assets is to determine whether the common factors include predictability of returns within the 

portfolio. 

 

 
88 See, for example, Linton (2019, section 8.8.1). 
89 Each pairwise correlation between the REIT indices WD, WP, and FNRE exceeds the value 0.999. Because they 

are so highly linearly correlated, only WD was chosen for the factor analysis. 
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Figure 10.30 Plot of the loading vector (component 1, component 2) = (𝛽𝑖1, 𝛽𝑖2) in the space 

defined by the factors  𝒇1 and 𝒇𝟐 obtained from a two-factor analysis of 42 assets that are 

exogenous and endogenous to the TVP long-only domestic portfolio optimized subject to a 4% 

turnover constraint. 

As a first illustration, we consider the entire set of exogenous and endogenous attributes. For 

graphical purposes, we look for only two factors. Fig. 10.30 plots the loading vectors (𝛽𝑖1, 𝛽𝑖2) in the 

space defined by the factors  𝒇1 and 𝒇𝟐 obtained from a two-factor analysis of  𝑖 = 1,… , 42 assets 

that are exogenous and endogenous to the example portfolio. Except for the treasury-rate-tracking 

attributes, SPBDUB3T and TIP, the data has a strong positive orientation with one of the two 

factors. Fig. 10.31 uses a bar graph to present the same data; the top plot shows the component-

loading values 𝛽𝑖1 and the bottom shows the values 𝛽𝑖2. There are two advantages to the bar plot 

presentation: it is extendable to more than two factors, and it is easy to identify the individual assets. 

Fig. 10.31 identifies the two factors as 𝒇1: endogenous data and 𝒇2: exogenous data. It is also clear 

that 𝒇2 comprises the class of exogenous data, excepting those assets heavily weighted to treasury 

rates (AGG SPBUD3T, TIP) and the gold commodity (XAU). 

 

 

 
Figure 10.31 Bar plots of the component-loading data, 𝛽𝑖1 (top) and𝛽𝑖2 (bottom), in Fig. 10.30 (top). 



Analytics for the Real Estate Market  

 

  

The specific variances for each attribute (bottom). 

 

Fig. 10.31 also plots the specific variances (the diagonal elements 𝜎𝑖
2 of the latent random 

component 𝑫) for each attribute. A small specific variance indicates that the factors are explaining 

a great deal of the observed variance for that attribute (e.g., SPY, RUA, VBINX). In contrast, the 

factor model is explaining little of the observed variance for gold and the three treasury-rate-related 

attributes. The commonality ℎ2 is defined as the fraction of the total variance in the data set that is 

explained by the factors. Summing the specific variances and normalizing by the number of 

attributes gives 1 − ℎ2, the fraction of the total variance that is unaccounted for by the factors. For 

this two-factor model, ℎ2 = 62.9%. 

Because the factor analysis returns a return time series for each identified factor, a regression can 

be run for the portfolio returns against the factor returns. Running the regression 

𝒓𝑝 = �̅�𝑝 + 𝛼1𝒇1 + 𝛼2𝒇𝟐 

produces 

𝒓𝑝 = 0.00063 − 0.0027𝒇1 + 0.014𝒇𝟐 (10.36) 

with an 𝑅2 value of 55%. The portfolio return has a positive dependence on the exogenous factor and 

a negative (and 80% smaller) dependence on the endogenous factor. These two factors account for 

55% of the variance exhibited by the portfolio-return series. Fig. 10.32 presents a 3D plot of the 

portfolio-return data compared to the regression plane (10.36). 

 

 
Figure 10.32 3D plot of the return data for the TVP long-only domestic portfolio optimized 

subject to a 4% turnover constraint compared to the regression plane (10.36). 
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Figure 10.33 Bar plots of the component-loading data, 𝛽𝑖1, 𝛽𝑖2, and 𝛽𝑖3 (top to bottom), resulting 

from a three-factor model run on the exogenous and endogenous attributes (top). The specific 

variances for each attribute (bottom). 

 

Exploring a three-factor analysis produces the component loadings and specific variances shown 

in Fig. 10.33. Again, we identity the first two factors, respectively, as “endogenous” and “exogenous 

– with the exception of gold and treasury rates.” The third latent factor emerging from the endogenous 

date has strong loadings on the one-day lagged REITs CCI, AMT, and SBAC, as well as on the one-

day lagged portfolio returns. Examining the business descriptions in section 2.1.1 leads to the 

conclusion that factor 3 has an association with wireless infrastructure REITs. Regressing the portfolio 

return against these three factors produces 

𝒓𝑝 = 0.00063 − 0.0025𝒇1 + 0.014𝒇𝟐 − 0.0012𝒇𝟑 (10.37) 

with an 𝑅2 value of 55%. With a coefficient half the size of the first factor, the portfolio return has a 

negative correlation with this third factor. 
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Figure 10.34 Bar plots of the component-loading data, 𝛽𝑖1 to 𝛽𝑖6 (top to bottom), resulting from a 

six-factor model run on the exogenous and endogenous attributes (top). The specific variances for 

each attribute (bottom). 

 

Fig. 10.34 displays the results for a six-factor analysis. The regression of the portfolio returns 

against these factor returns results in 

𝒓𝑝 = 0.00063 − 0.0026𝒇1 + 0.014𝒇𝟐 − 0.00085𝒇𝟑 − 0.00066𝒇𝟒 − 0.000845𝒇𝟓
− 0.0021𝒇𝟔 

(10.38) 

with an 𝑅2 value of 55%. The first three factors correspond to those identified in the three-factor 

analysis. The fourth factor is exogenous and has dominant loadings by the treasury-rate-related 

attributes AGG and TIP (though, interestingly, not SPBDUB3T). Thus treasury-rate dependence 

enters as a lower-influence factor. The fifth factor is an interesting combination of (i) retail REITS 

(MAC, FRT, REG, and SPG) with negative loadings on the factor, (ii) two REITS (VNO and 

SLG), also with negative loadings, that have the common feature of investing in office real estate 

in New York City, and (iii) residential and residentially correlated REITS (AVB, EQR, ESS, 

MAA, PSA, and UDR) with positive loadings. The sixth factor has positive dominant loadings by 

EEM and EFA (international markets) and by USO and XAU (international commodities) as well 

as negative loading attributes by a set of attributes whose commonality is more obscure. 

This process can be iterated to search for additional latent factors. Objective tests (the Kaiser 

criterion (Kaiser, 1960); Horn’s parallel analysis (Horn, 1965); and Velicer’s MAP test (Velicer, 
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1976)) have been suggested for determining the number of factors. Because they are based on 

different criteria, however, they may not agree on the number of factors. A simple threshold method 

consisting of finding enough factors to achieve a predetermined value of the commonality ℎ2 could be 

employed, but it is generally difficult to establish a predetermined threshold. A compromise is to 

employ a scree plot (Cattell, 1966), which plots the commonality, ℎ2, as a function of the number of 

factors. Fig. 10.35 presents a scree plot summarizing factor analyses using two through six factors on 

this data set. The figure implies that little additional explanatory variance will be accomplished by 

increasing the number of factors much beyond six. An interpretation regarding when the value of ℎ2is 

“leveling off” is subjective and can be susceptible to user bias. 

 

 
Figure 10.35 Scree plot of the commonality, ℎ2, as a function of the number of factors assumed in 

the analysis of the 42 exogenous and endogenous attributes considered for the TVP long-only 

domestic portfolio optimized subject to a 4% turnover constraint. 

 

Note that the 𝑅2 values of the regression fits (10.36)–(10.39) do not change with the number of 

factors, suggesting that the size of the attribute set, rather than the number of factors, must be expanded 

in order to obtain an improved regression. 

We use a small set of 42 exogenous and endogenous factors for this analysis. A reference such 

as the Handbook for the Barra Risk Model (MSCI Barra Inc., 2007) provides some insight into the 

huge number of potential attributes that can be considered in any factor analysis. Using stepwise 

regression, possibly followed by computation of pairwise correlations, can be an effective way of 

winnowing an initial list. We illustrate these two techniques by adding the REIT index FNRE to 

the set of 42 exogenous and endogenous attributes examined above. We begin by running a 

stepwise regression of the daily returns of the example portfolio against the returns of these 43 

factors. We use the adjusted 𝑅2 criterion, which adds an attribute to the regression only if it 

increases the regression value of the adjusted 𝑅2. Doing so reduces the data set to 28 attributes. 

We then compute the correlation matrix of these 28 attributes. The REIT indices WD and FNRE 

are highly correlated, with a coefficient value of 0.9990. A linear regression between these two 

attributes reveals  

𝒓FNRE = 0.0000 − 0.9990𝒓WD  

with an 𝑅2 value of 99.8% and an error variance of 0.0019. This is a very remarkable linear dependence 

between two series involving 3,741 daily return values. Including both attributes in the factor analysis 

will lead to spurious specific variances (Heywood case). We therefore remove FNRE from the data 
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set and rerun the stepwise regression on the original 42 attributes.90 The stepwise regression results 

in 26 attributes. 

 

 
Figure 10.36 Bar plots of the component-loading data, 𝛽𝑖1 to 𝛽𝑖5 (top to bottom), resulting from a 

five-factor model run on the reduced set of exogenous and endogenous attributes. 

 

For brevity, we consider the results of running a five-factor analysis on this reduced (by 38%) 

attribute set. Fig. 10.36 displays the factor loadings. Labeling the five factors from this figure 𝒇𝟏
′  

through 𝒇𝟓
′  to distinguish them from the factors in Fig. 10.34, we see the clear correspondences  

𝒇𝟏
′ ↔ 𝒇𝟏; 𝒇𝟐

′ ↔ 𝒇𝟐; 𝒇𝟑
′ ↔ 𝒇𝟑; 𝒇𝟒

′ ↔ 𝒇𝟓 (The fact that individual-attribute loadings have the 

opposite signs between 𝒇𝟒
′  and 𝒇𝟓 is not relevant, because the +/− direction of a factor in factor 

space is arbitrary.) Finally, 𝒇𝟓
′  corresponds to 𝒇𝟒 and 𝒇𝟔. The commonality of this factor analysis is 

71%, the same as for the five-factor analysis using all 42 attributes. Regressing the portfolio returns 

against the five factors, 𝒇𝟏
′  to 𝒇𝟓

′  , yields 

𝒓𝑝 = 0.00063 − 0.0025𝒇𝟏
′  + 0.014𝒇𝟐

′ − 0.0014𝒇𝟑
′ − 0.0012𝒇𝟒

′ − 0.0019𝒇𝟓
′  (10.39) 

with an 𝑅2 value of 55% and an error variance of 0.00016. 

Other acceptance/rejection criteria can be used in a stepwise regression to winnow the attribute set. 

The possibilities include the following: 

SSE: running an 𝐹-test on the null hypothesis of no significant change in the sum-of-squares error 

under the addition (or removal) of an attribute 

 
90 Clearly one could simplify the stepwise regression–correlation matrix–stepwise regression sequence by starting 

with the computation of the correlation matrix on the unwinnowed list of attributes, eliminating those having strong 

linear dependence, and then running a single stepwise regression to reduce the data set. Anticipating a difference in 

the size of the correlation matrices in the unwinnowed and winnowed case, we suggest the three-step sequence. 
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AIC: requiring a reduction in the Akaike information criterion 

BIC: requiring a reduction in the Bayesian information criterion 

Each criterion will lead to a different level of reduction of the starting data set. Table 10.1 compares 

the size of the winnowed data set using the adjusted 𝑅2 (ADJR) criterion, the SSE criterion (at 95% 

significance level), the AIC, and the BIC. The BIC provides the most aggressive reduction of our data 

set, followed by SSE. 

 

Table 10.1 Size of reduced attribute set obtained from stepwise 

regression under the four acceptance criteria. 

ADJR SSE (95%) AIC BIC 

26 14 23 5 

 

Regardless of the identity of the latent factors, additional valuable information may be gleaned 

from the loading dependencies on the factors. For example, any set of attributes that is positively 

loaded on a factor provides for opportunities to hedge against any set of attributes that is negatively 

loaded on the same factor. 

 

References 

 

Andreou, E. & Ghysels, E. (2009). Structural breaks in financial time series. In T. G. Anderson, 

R. A. Davis, J.-P Kreiβ  & T. Mikosch (Eds.), Handbook of financial time series. Springer-

Verlag, Heidelberg. 

Bruder, B. & Roncalli, T. (2012). Managing risk exposures using the risk budgeting approach. 

SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.2009778 

Boudt, K., Carl, P. & Peterson, B. G. (2013). Asset allocation with conditional value-at-risk 

budgets. Journal of Risk, 15, 39–68. 

Boudt, K., Peterson, B. G. & Christophe, C. (2008). Estimation and decomposition of downside 

risk for portfolios with non-normal returns. Journal of Risk, 11, 79–103. 

Cattell, R. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 

245–76. 

Chow, G. (1960). Tests of equality between sets of coefficients in two linear regressions. 

Econometrica, 28, 591–605. 

Chow, G. & Kritzman, M. (2001). Risk budgets. Journal of Portfolio Management, 27(2), 56–60. 

Cont, R., Deguest, R. & Giacomo S. (2007). Robustness and sensitivity analysis of risk 

measurement procedures. Financial Engineering Report No. 2007-06. Columbia University 

Center for Financial Engineering. 

Dowd, K. (2005). Measuring market risk (2nd ed.). John Wiley & Sons, West Sussex. 

Fama, E. F. & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. 

Journal of Financial Economics, 33, 3–56. 

Fama, E. F. & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial 

Economics, 116, 1–22. 



Analytics for the Real Estate Market  

 

  

Favre, L. & Galeano, J.-A. (2002). Mean-modified value-at-risk optimization with hedge funds. 

Journal of Alternative Investment, 5, 2–21. 

Gourieroux, C., Laurent, J.-P. & Scaillet, O. (2000). Sensitivity analysis of value-at-risk. Journal 

of Empirical Finance, 7, 225–245. 

Grinhold, R. C. & Kahn, R. N. (2000). Active portfolio management (2nd ed.). McGraw Hill, New 

York. 

Haugh, M., Iyengar, G. & Song, I. (2017). A generalized risk budgeting approach to portfolio 

construction. Journal of Computational Finance, 21(2), 29–60. 

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 

30, 179–185. 

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and 

Psychological Measurement, 20, 141–151 

Linton, O. (2019). Financial econometrics: Models and methods. Cambridge University Press, 

Cambridge. 

Litterman, R. (1996). Hot SpotsTM and hedges. Journal of Portfolio Management, 23(5), 52–75. 

Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the National 

Institute of Science of India, 2, 49–55. 

Maillard, S., Roncalli, T. & Tëıletche, J. (2010). The properties of equally weighted risk 

contribution portfolios. Journal of Portfolio Management, 36(4), 60–70. 

McNeil, A. J., Frey, R. & Embrechts, P. (2005). Quantitative risk management: Concepts, 

techniques, and tools. Princeton University Press, Princeton, NJ. 

Mina, J. & Xiao, J. Y. (2001). Return to RiskMetrics: The evolution of a standard. RiskMetrics 

Group, Inc., New York. 

MSCI Barra Inc. (2007). Barra risk model handbook. RV 10-2007. 

Peterson, B. G. & Boudt, K. (2008). Component VaR for a non-normal world. Risk, 21(11), 78–

81. 

Sharpe, W. (1970). Portfolio theory and capital markets. McGraw-Hill, New York. 

Shirvani, A., Stoyanov, S., Rachev, S. T. & Fabozzi, F. J. (2020). A new set of financial 

instruments. Frontiers in Applied Mathematics and Statistics, 26. https://doi.org/10.3389/fams. 

2020.606812 

Velicer, W. F. (1976). Determining the number of components from the matrix of partial 

correlations. Psychometrika, 41, 321–327. 

Zangari, P. (1996). A VaR methodology for portfolios that include options. RiskMetrics Monitor, 

JP Morgan-Reuters, First Quarter, 4–12. 

 

https://doi.org/10.3389/


11. Optimization with Performance Attribution Constraints 

163  

Chapter 11 
Optimization with Performance-Attribution Constraints 

 

This chapter demonstrates performance-attribution measures as a basis for constraining portfolio 

optimization. We employ optimizations that minimize CVaR and investigate two performance 

attributes, asset allocation (AA) and the selection effect (SE), as constraints on asset weights. The 

test portfolio consists of stocks from the Dow Jones Industrial Average index. Values for the 

performance attributes are established relative to a benchmark consisting of equal-weighted 

portfolios of the same stocks. The performance of the optimized portfolios is evaluated using 

comparisons of cumulative price and the risk measures MDD (4.8), SR (4.9), SS (4.10), and RR 

(4.11). The results suggest that achieving SE performance thresholds requires larger turnover 

values than those required for achieving comparable AA thresholds. The results also suggest that 

the imposition of constraints on AA and SE plays a positive role in price and risk-measure 

performance. 

How well a portfolio performs is always the primary concern for investors, and it is usually 

the metric that best reflects investor confidence in the portfolio's management. In common terms, 

a good portfolio delivers satisfactory return with low risk. Attribution analysis provides measures 

for how well a portfolio is being managed. Paraphrasing Bacon (2008), performance attribution is 

a technique used to quantify the excess return (relative to a benchmark) of a portfolio and explain 

that performance in terms of investment strategy and market conditions. From a management 

perspective, attribution analysis has been used to monitor performance, identify early indications 

of underperformance, and gain investor confidence by demonstrating a thorough understanding of 

the performance drivers. To the best of our knowledge, performance-attribution measures are 

currently used exclusively as a diagnostic tool, in the sense that if today's attribute values 

underperform, changes are implemented in the portfolio with the goal of improving tomorrow's 

attribute values. In this chapter, we investigate the approach of imposing performance-attribute 

constraints to guarantee that tomorrow's portfolio will achieve the required attribute values. 

Following the foundational studies of performance attribution by Brinson and Fachler (1985) 

and Brinson et al. (1986), we decompose excess return into two quantities that reflect investment 

strategy: AA, which measures the contribution of each asset class in a portfolio to the portfolio’s 

total performance, and SE, which measures the impact of asset choice within each class in the 

portfolio. As their definitions in the next section indicate, AA and SE measure the differences 

between the mean performance of asset classes in a managed portfolio and that of asset classes in 

a market benchmark and are therefore “blind” to volatility effects, that is, to tail risk. Motivated 

by the further work of Biglova and Rachev (2007) and Rachev et al. (2009), we investigate the 

impact on portfolio optimization of using AA and SE as additional constraints on asset weights as 

a method of combining performance and tail-risk control. We apply this methodology to a test 

portfolio of stocks comprising a major market index, namely the Dow Jones Industrial Average. 

Optimization is performed by minimizing CVaR at a specified quantile level, 𝛼. For the required 

market benchmark, we consider two options, an equal-weighted portfolio and a price-weighted 

portfolio, comprised of the same assets. The performance of the resulting optimal portfolios is 

measured in terms of cumulative portfolio price and standard risk measures. 

 

11.1 Performance-Attribute Constraints 
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Consider a managed portfolio 𝑝 comprised of 𝑁 assets consisting of 𝑀 asset classes with 𝑛𝑖 assets 

in class 𝑖;  𝑖 = 1,… ,𝑀 such that ∑ 𝑛𝑖
𝑀
𝑖=1 = 𝑁. Let 𝑏 denote a benchmark portfolio composed of 𝑄 

assets comprising the same 𝑀 asset classes, with 𝑞𝑖 assets in class 𝑖;  𝑖 = 1, … ,𝑀 such that 

∑ 𝑞𝑖 = 𝑄𝑀
𝑖=1 . Let the index pair, 𝑖𝑗;  𝑖 = 1, … ,𝑀;  𝑗 = 1, … , 𝑛𝑖, identify portfolio asset 𝑗 in class 𝑖, 

with the analogous identification for benchmark assets. Denote the daily closing price of an asset 

as 𝑆𝑖𝑗(𝑡) and its corresponding log-return as 𝑟𝑖𝑗(𝑡) = ln(𝑆𝑖𝑗(𝑡) 𝑆𝑖𝑗(𝑡 − 1)⁄ ). For brevity, we 

suppress the time variable for most of the discussion in this section. Let 𝑤𝑖𝑗
(𝑝)

 denote the weight of 

asset 𝑖𝑗 in portfolio 𝑝 and 𝑤𝑖𝑗
(𝑏)

 denote asset weight in the benchmark. We assume all weights are 

nonnegative; that is, all the portfolios considered take long-only positions. Let 𝑤𝑖
(𝑝)
= ∑ 𝑤𝑖𝑗

(𝑝)𝑛𝑖
𝑗=1  

and 𝑤𝑖
(𝑏)
= ∑ 𝑤𝑖𝑗

(𝑏)𝑞𝑖
𝑗=1  represent the total weights of the assets in class 𝑖 in the portfolio and 

benchmark, respectively. Note that for any portfolio fully invested in its component assets (which 

we assume is the case), ∑ 𝑤𝑖
(𝑝)𝑀

𝑖=1 = ∑ 𝑤𝑖
(𝑏)𝑀

𝑖=1 = 1. 

The quantities AA and SE for asset class 𝑖 are defined as follows (Biglova and Rachev, 2007):91 

AA𝑖 = (𝑤𝑖
(𝑝)
− 𝑤𝑖

(𝑏)
)(𝑅𝑖

(𝑏)
− 𝑅(𝑏)), (11.1) 

𝑆𝐸𝑖 = 𝑤𝑖
(𝑏)
(𝑅𝑖

(𝑝)
− 𝑅𝑖

(𝑏)
), (11.2) 

where 

𝑅𝑖
(𝑝)
=∑

𝑤𝑖𝑗
(𝑝)

𝑤𝑖
(𝑝)
 𝔼[𝑟𝑖𝑗]

𝑛𝑖

𝑗=1

,     𝑅𝑖
(𝑏)
=∑

𝑤𝑖𝑗
(𝑏)

𝑤𝑖
(𝑏)
 𝔼[𝑟𝑖𝑗]

𝑞𝑖

𝑗=1

,     𝑅(𝑏) =∑∑ 𝑤𝑖𝑗
(𝑏)
𝔼[𝑟𝑖𝑗]

𝑞𝑖

𝑗=1

𝑀

𝑖=1

, (11.3) 

and 𝔼[∙] denotes expected value. In (11.3), the ratio 𝑤𝑖𝑗
(𝑝)

𝑤𝑖
(𝑝)

⁄ represents the fractional weight 

held by asset 𝑗 in class 𝑖 in portfolio 𝑝. (That is, ∑ (𝑤𝑖𝑗
(𝑝)

𝑤𝑖
(𝑝)

⁄ ) = 1
𝑛𝑖
𝑗=1 .) Thus, 𝑅𝑖

(𝑝)
 (and similarly, 

𝑅𝑖
(𝑏)

) represents an expected log-return of asset class 𝑖 viewed as a fully invested portfolio in itself. 

In contrast, 𝑅(𝑏) represents the usual expected log-return of the entire benchmark portfolio.92 From 

(11.3), we have 𝑅(𝑏) = ∑ 𝑤𝑖
(𝑏)
𝑅𝑖
(𝑏)𝑀

𝑖=1 . Similarly, we have the usual expected log-return of 

portfolio 𝑝, 

 
91 In the original formulation developed by Brinson et al. (1986) (see also Bacon, 2008, Chapter 5), AA𝑖 is defined as 

AA𝑖 = (𝑤𝑖
(𝑝)
− 𝑤𝑖

(𝑏)
)𝑅𝑖

(𝑏)
. The definition in Biglova and Rachev (2007), which we follow here, uses the excess return 

𝑅𝑖
(𝑏)
− 𝑅(𝑏) for benchmark class 𝑖 relative to the entire benchmark return in the definition (8.1) of AA𝑖. We note that 

although this modifies the values for AA𝑖 relative to that of the original Brinson et al. formulation, the total value, 

AA =  ∑ (𝑤𝑖
(𝑝)
− 𝑤𝑖

(𝑏)
)(𝑅𝑖

(𝑏)
− 𝑅(𝑏))𝑀

𝑖=1 = ∑ (𝑤𝑖
(𝑝)
−𝑤𝑖

(𝑏)
)𝑅𝑖

(𝑏)𝑀
𝑖=1 − ∑ (𝑤𝑖

(𝑝)
− 𝑤𝑖

(𝑏)) 𝑅(𝑏)𝑀
𝑖=1 = ∑ (𝑤𝑖

(𝑝)
−𝑀

𝑖=1

𝑤𝑖
(𝑏)) 𝑅𝑖

(𝑏) − 0, is in agreement with the total value of AA in the Brinson et al. approach. 

92 If 𝑅𝑖
(𝑝)
, 𝑅𝑖

(𝑏)
, 𝑅(𝑏), and 𝑟𝑖𝑗  were simple (i.e., discrete) returns, the formulas in (11.3) would be exact. However, 

because they are log-returns, such formulas are approximate. For example, to leading order in a Taylor series 

expansion 𝑅(𝑏) − ∑ ∑  𝑤𝑖𝑗
(𝑏)𝔼[𝑟𝑖𝑗]

𝑞𝑖
𝑗=1

𝑀
𝑖=1 ≈ 

1

2
[∑ ∑  𝑤𝑖𝑗

(𝑏)
𝔼[𝑟𝑖𝑗]

2𝑞𝑖
𝑗=1

𝑀
𝑖=1 − (∑ ∑  𝑤𝑖𝑗

(𝑏)
𝔼[𝑟𝑖𝑗]

𝑞𝑖
𝑗=1

𝑀
𝑖=1 )

2

]. 
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𝑅(𝑝) =∑∑ 𝑤𝑖𝑗
(𝑝)
𝔼[𝑟𝑖𝑗]

𝑛𝑖

𝑗=1

𝑀

𝑖=1

=∑𝑤𝑖
(𝑝)
𝑅𝑖
(𝑝)

𝑀

𝑖=1

 . (11.4) 

The excess return, 𝑆 = 𝑅(𝑝) − 𝑅(𝑏), can be viewed as the value added by portfolio 

management. From (11.1) through (11.4), 

𝑆 =∑(AA𝑖 + SE𝑖 + I𝑖)

𝑀

𝑖=1

= AA + SE + I , (11.5) 

where I𝑖 = (𝑤𝑖
(𝑝)
− 𝑤𝑖

(𝑏)
)(𝑅𝑖

(𝑝)
− 𝑅𝑖

(𝑏)
) is an “interaction” term. AA, SE, and I are, respectively, 

the total AA, total SE, and total interaction terms for portfolio 𝑝. AA𝑖 represents the contribution 

to the total value added to the excess return, 𝑆, from asset class 𝑖, whereas SE𝑖 represents the 

contribution to 𝑆 determined by the choice of assets within class 𝑖. To understand these 

interpretations, consider first the sign of the value of AA𝑖 in (11.1). 

• If 𝑅𝑖
(𝑏)
− 𝑅(𝑏) > 0, the expected return of asset class 𝑖 in the benchmark is outperforming the 

total expected return of the benchmark. Therefore, if 𝑤𝑖
(𝑝)
− 𝑤𝑖

(𝑏) > 0, the weight of asset class 

𝑖 in portfolio 𝑝 is larger than in the benchmark, capitalizing further on the better return of class 

𝑖. Otherwise, if 𝑤𝑖
(𝑝)
−𝑤𝑖

(𝑏) < 0, the class 𝑖 weighting in portfolio 𝑝 is detrimental to the 

potential performance of that class (as determined by the benchmark). 

• If 𝑅𝑖
(𝑏)
− 𝑅(𝑏) < 0, the expected return of asset class 𝑖 in the benchmark is underperforming 

the total expected return of the benchmark. Therefore, if 𝑤𝑖
(𝑝)
−𝑤𝑖

(𝑏) < 0, the weight of asset 

class 𝑖 in portfolio 𝑝 is smaller than in the benchmark, further suppressing the poorer return of 

that class. Otherwise, if 𝑤𝑖
(𝑝)
− 𝑤𝑖

(𝑏) > 0, the class 𝑖 weighting in portfolio 𝑝 is overweighting 

the poor performance of that class. 

Thus, a positive sign for the value of AA𝑖 indicates a “correct” decision in the management of 

portfolio 𝑝 relative to the benchmark, whereas a negative sign indicates a “poor” decision. The 

magnitude of AA𝑖 quantifies how correct or poor the decision is. 

Similarly, because we assume93 𝑤𝑖
(𝑏)
> 0, 𝑖 = 1, … ,𝑀, a positive sign for the value of SE𝑖 in 

(11.2) indicates that the expected return of the choice of assets in class 𝑖 in portfolio 𝑝 is 

outperforming that class in the benchmark, whereas a negative sign indicates that the expected 

return of the choice of assets in class 𝑖 in portfolio 𝑝 is underperforming. 

The interaction term, I𝑖, captures the part of the excess return unexplained by AA and SE. 

Written as 

I𝑖 =
AA𝑖SE𝑖

𝑤𝑖
(𝑏)
(𝑅𝑖

(𝑏)
− 𝑅(𝑏))

 , (11.6) 

it can be viewed as the product of the AA and SE contributions of class 𝑖 to portfolio 𝑝 compared 

to the weighted excess return of class 𝑖 in the benchmark 𝑏. Alternatively, written as 

 
93 Also a requirement for class 𝑖 to be in the portfolio. 
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I𝑖 = (
𝑤𝑖
(𝑝)

𝑤𝑖
(𝑏)
− 1) SE𝑖, (11.7) 

it can be interpreted as the product of SE and the over- or underweighted part of asset class 𝑖. The 

relationship (11.7) between I𝑖 and SE𝑖 reveals a simple form for the sum of SE and the interaction 

terms: 

SE̅̅ ̅𝑖 ≔ SE𝑖 + I𝑖 = 𝑤𝑖
(𝑝) (𝑅𝑖

(𝑝) − 𝑅𝑖
(𝑏)) . (11.8) 

Equation (11.8) provides a way to incorporate a constraint on the sum of SE and the interaction 

effect for class 𝑖; however, we do not consider such a combined constraint here. 

Portfolio optimizations that maximize return while minimizing risk (subject to additional 

constraints) require the specification of a proxy measure for risk. Common examples of risk 

proxies are the variance of the portfolio (Markowitz, 1952), VaR (JP Morgan, 1996), expected tail 

loss, CVaR (Rockafellar and Uryasev, 2000),94 and mean absolute deviation (Konno and 

Yamazaki, 1991). Measures that focus on tail risk, such as VaR and CVaR, have become very 

popular as a result of the need to understand exposure to loss under “extreme” market events. 

(Gava et al. (2021) has recently demonstrated that consideration of tail risk can successfully reduce 

sharp losses in multiasset portfolios.) However, VaR has undesirable mathematical characteristics; 

except when the underlying random process is Gaussian, VaR is not a coherent risk measure, 

because it lacks the properties of subadditivity and convexity (Artzner et al., 1999). As a risk 

measure, CVaR is coherent (Pflug, 2000); its use as a standard has grown to the point that the 

Basel III regulatory framework for banks requires it. We therefore use CVaR as the risk measure 

for our portfolio optimizations. 

Rockafellar and Uryasev’s (2000) approach to portfolio optimization, which is based on 

minimizing CVaR at quantile level 1 − 𝛼, is discussed in section 3.2.3 and leads to the 

minimization problem (3.31). When evaluated for a portfolio consisting of a finite sample of asset 

returns, 𝒓(𝑡), 𝑡 = 1,…𝑇, with 𝑓(𝒘, 𝒓) = 𝒘′𝒓,95 the discrete form of (3.31) results in the 

minimization problem 

min
𝒘
CVaR𝛼(𝒘) = min

𝒘,𝛾
{γ +

1

𝛼 𝑇
∑(−𝒘′𝒓(𝑡) − 𝛾)+
𝑇

𝑡=1

}. (11.9) 

As noted in (3.32), Rockafellar and Uryasev’s approach proceeds by converting (11.9) into a linear 

objective function by introducing the variable 𝑦𝑡 ≥ −𝒓𝑡
𝑇𝒘− 𝛾 ≥ 0. This conversion is 

particularly appropriate if all the constraints are also linear, in which case the constrained 

minimization problem can be solved by linear programming. Because we deal with nonlinear 

constraints, we leave the objective function in the form (11.9) and solve using nonlinear 

optimization. 

 
94 If the underlying profit–loss distribution is continuous, then the definitions of ETL (also known as tail conditional 

expectation (TCE) or tail value-at-risk (TVaR)) and CVaR (also known as expected shortfall (ES) or average value-

at-risk (AVaR)) coincide. In the general case, however, CVaR is a coherent risk measure whereas ETL is not 

(Stoyanov, 2005). 
95 In contrast to Chapter 3, here we use the notation 𝒘′ to refer to vector transpose to avoid confusion with the time 

value 𝑇. 
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We describe our approach for solving (11.9) with a general constraint here and discuss the 

specific constraints below. Consider optimization of (11.9) under the constraint 𝑐1(𝒘) ≤ 0. If, on 

day 𝑡, the feasible set for the constrained optimization is null, the constraint is removed and 

replaced for that day by adding a quadratic penalty term to (11.9), 

min
𝒘
CVaR𝛼(𝒘) = min

𝒘,𝛾
{γ +

1

𝛼 𝑇
∑(−𝒘′𝒓(𝑡) − 𝛾)+
𝑇

𝑡=1

+ 𝛽((𝑐1(𝒘))
+)2}. (11.10) 

The coefficient 𝛽 can be set by the user. If 𝑘 constraints need to be removed, they are replaced in 

(11.10) by the sum 𝛽 ∑ ((𝑐𝑖(𝒘))
+).2𝑘

𝑖=1  

We consider four portfolio-optimization problems, P𝛼
𝑘, 𝑘 = 0,… , 3, based on constrained 

minimization of (11.9) or, in the case of a null feasible set, (11.10): 

P𝛼
0: (a) 𝑤𝑖𝑗

(𝑝)
≥ 0, ∑ 𝑤𝑖𝑗

(𝑝)
𝑖𝑗 = 1; and (b) TO ≤ CTO; 

P𝛼
1: (a) 𝑤𝑖𝑗

(𝑝)
≥ 0, ∑ 𝑤𝑖𝑗

(𝑝)
𝑖𝑗 = 1; (b) TO ≤ CTO;and (c) 𝑎1 ≤ AA ≤ 𝑏1. 

P𝛼
2: (a) 𝑤𝑖𝑗

(𝑝)
≥ 0, ∑ 𝑤𝑖𝑗

(𝑝)
𝑖𝑗 = 1; (b) TO ≤ CTO;and (d) 𝑎2 ≤ SE ≤ 𝑏2. 

P𝛼
3: (a) 𝑤𝑖𝑗

(𝑝)
≥ 0, ∑ 𝑤𝑖𝑗

(𝑝)
𝑖𝑗 = 1; (b) TO ≤ CTO; (c) 𝑎1 ≤ AA ≤ 𝑏1; and (d) 𝑎2 ≤ SE ≤ 𝑏2. 

Here, TO ≤ CTO is a turnover constraint, 

TO =
1

2
∑∑ |𝑤𝑖𝑗

(𝑝)(𝑡) − 𝑤𝑖𝑗
(𝑝)(𝑡 − 1)|

𝑛𝑖

𝑗=1

𝑀

𝑖=1

≤ CTO, (11.11) 

used as a proxy to control transaction costs. The “base case” portfolio P𝛼
0 considers no 

performance-attribute constraints and is therefore independent of the benchmark portfolio. The 

optimization problems P𝛼
1 through P𝛼

3 successively add further performance-attribute constraints 

to the long-only, fully invested, CVaR𝛼-minimized base portfolio. 

The user can specify the constants 𝑎𝑖, 𝑏𝑖 to meet particular goals. For example, the constraint 

AA ≥ 0 requires that, on average, the asset classes in the optimized portfolio 𝑝 equal or outperform 

those in the benchmark. A constraint SE𝑖 ≥ 0 requires that the weights of the portfolio assets in 

class 𝑖 be adjusted to perform as well as or better than class 𝑖 in the benchmark. Because individual 

asset weights can be zero, adjusting weights is equivalent to choosing the set of assets within in 

the class. The constraint SE ≥ 0 requires that improved performance be achieved as an average 

over classes. Because 𝑅𝑖
(𝑝)(𝑡) involves the ratio 𝑤𝑖𝑗

(𝑝)(𝑡) 𝑤𝑖
(𝑝)(𝑡)⁄ , constraints involving SE𝑖 terms 

are nonlinear. In contrast, constraints involving terms AA𝑖 and SE̅̅ ̅𝑖 are linear.96 Our implementation 

is performed in MatLab using the constrained, nonlinear multivariate function fmincon() and the 

solver  sqp(). The performance of these four optimized portfolios relative to one another is 

evaluated on the basis of cumulative price and the four risk measures discussed in section 4.3. 

 

11.2 Application to Domestic REIT Portfolio 

 

Using both historical and dynamic long-only optimization, we apply CVaR minimization under 

performance-attribution constraints to the domestic portfolio. The REIT asset classes assigned are 

presented in Table 11.1. As equations (11.1)–(11.6) indicate, the results of an attribution analysis 

 
96 This assumes that benchmark weight values can be obtained in a timely manner and are not part of the optimization. 
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depend on the choice of benchmark. For ease of assignment to asset classes, we use the equal-

weighted domestic portfolio EQW as the benchmark for determining values for AA𝑖 and SE𝑖.
97 

The 10-year U.S. Treasury yield-curve rate is used for the risk-free rate. 

 

Table 11.1 Asset classes in the domestic portfolio. 

Class REIT  

Office/Industrial VNO ARE PLD BXP DRE SLG PSA   

Residential AVB EQR MAA UDR ESS     

Retail SPG MAC FRT O REG     

Specialty HCP VTR NLY AMT CCI IRM SBAC WY HST 

 

We optimize at two separate quantile levels, 𝛼 ∈ {0.95, 0.99}. Daily turnover constraints are 

set to one of three values: CTO = ∞ (no turnover constraint), 4%, and 0.4%. For the attribution 

constraints in optimizations P𝛼
1, P𝛼

2, and P𝛼
3, we set the lower bounds 𝑎1 = 𝑎2 = 0 and set no upper 

bounds (𝑏1 = 𝑏2 = ∞). Thus, for example, optimization P𝛼
1 minimizes CVaR𝛼 for the long-only 

portfolio while requiring that, on average, its asset classes outperform the benchmark. 

If the constrained optimization problem results in a null feasible set for day 𝑡, constraints are 

replaced by penalty terms in the following order: 

P𝛼
0: The turnover constraint is replaced by a penalty term. 

P𝛼
1: The turnover constraint is replaced by a penalty term. If the feasible set is still null, the AA 

constraint is then additionally replaced by a penalty term. 

P𝛼
2: The turnover constraint is replaced by a penalty term; if necessary, the SE constraint is also 

replaced. 

P𝛼
3: The order of additional conversion into penalty terms is as follows: turnover constraint, SE, 

and finally AA. 

If the feasible space is still null after all the indicated hard constraints are converted into penalty 

terms for day 𝑡, the optimized weights obtained for day 𝑡 − 1 are used for day 𝑡. 
 

Table 11.2 Frequency of conversion of hard constraints into penalty terms 

(expressed as a percent of total time steps). 

 Historical Dynamic 

Portfolio TO TO 

+AA 

TO 

+SE 

TO 

+AA 

+SE 

TO TO 

+AA 

TO 

+SE 

TO 

+AA 

+SE 

 TO < ∞ TO < ∞ 

P0.95
0          

P0.95
1   0.0    0.0   

P0.95
2    8.7†    4.2  

P0.95
3    7.2 0.0   3.3 0.06 

 TO ≤ 4% TO ≤ 4% 

P0.95
0  0.0    36.6    

P0.95
1  1.2 0.0   67.6 0.0   

P0.95
2  7.4  3.8  43.4  1.0  

 
97 Thus, 𝑄 = 𝑁 and 𝑞𝑖 = 𝑛𝑖, 𝑖 = 1, … ,𝑀. 
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P0.95
3  7.9  3.5 0.03 73.1  0.8 0.0 

 TO ≤ 0.4% TO ≤ 0.4% 

P0.95
0  11.2    97.1    

P0.95
1  30.9 0.0   98.6 0.0   

P0.95
2  37.2  1.6  95.4  1.0  

P0.95
3  53.2  2.1 0.0 98.1  0.3 0.0 

† 2/3274 = 0.06% of the timesteps resulted in a null feasible set for time 𝑡 
 

For the optimizations that minimize CVaR0.95, Table 11.2 summarizes the frequency of 

conversion of a hard constraint into a penalty term. For example, for historical optimization of 

P0.95
3  under the turnover constraint TO ≤ 4%, 88.6% of the timesteps result in a feasible solution 

to the fully constrained problem; 7.9% of the timesteps require converting the turnover constraint 

into a penalty term; 3.5% of the timesteps require converting both the turnover and SE constraints 

into penalty terms; 0.03% of the timesteps (i.e., one timestep) require the conversion of turnover, 

SE, and AA constraints. A (non-empty) feasible set was always obtained when solving with a 

(combined) penalty term.98 We emphasize the following points: 

• When the turnover-constraint limit is decreased (a heavier constraint imposed), the frequency 

of conversion from a hard turnover constraint into a penalty term increases significantly. 

• The frequency of conversion of a hard turnover constraint into a penalty term also increases 

significantly in moving from historical to dynamic optimization. For the dynamic optimization, 

over 95% of the timesteps require the conversion of the TO ≤ 0.4% constraint into a penalty 

term. 

• Considering all of the optimizations performed in Table 11.2, the AA ≥ 0 constraint had to be 

converted into a penalty term only once: for a single timestep in the P0.90
1  optimization under 

the constraint TO ≤ 0.4%. 

• The frequency of conversion of the SE ≥ 0 constraint into a penalty term decreases as the 

turnover-constraint limit decreases, and it also decreases in moving from historical to dynamic 

optimization. 

• The results presented in Table 11.2 provide support for the choice of the TO–SE–AA order of 

conversion of hard constraints into penalty terms.  

 

  
(a) Historical, TO < ∞ (b) Historical, TO < 0.004 

 
98 In all the optimizations, whether for 𝛼 = 0.95 or 𝛼 = 0.99, only the historical, P0.95

2 , optimization with no turnover 

constraint recorded a timestep (and in fact, only two timesteps) in which an empty feasible set was obtained when 

attempting a solution using penalty terms. For those two timesteps, optimum weight values from the previous timestep 

were used. 
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(c) Dynamic, TO < ∞ (d) Dynamic, TO < 0.004 

Figure 11.1 Box-whisker summary statistics of the distribution of TO values for the historical 

and dynamic optimizations with TO < ∞ and TO ≤ 0.004 (0.4%). 

 

Fig. 11.1 displays the box-whisker summaries of the distribution of TO values in the resulting 

historical and dynamic optimized portfolios for TO < ∞ and TO ≤ 0.4%. By definition, 0 ≤
TO ≤ 1. For many of the optimizations, and especially  P𝛼

2 and P𝛼
3, outlier TO values approach 1. 

To illustrate the distribution statistics more clearly, the y-axis range is limited in Figs. 11.1(a), (b), 

and (d), whereas the full range is displayed in (c). 

• For optimizations with no turnover constraint, the imposition of performance-attribute 

constraints increases turnover values, with the constraint SE ≥ 0 producing the most 

significant turnover-value increases under historical optimization. For dynamic optimization, 

the imposition of AA ≥ 0 produces the most significant increase in turnover value. 

• As noted in Table 11.2, when a turnover constraint is imposed, the TO constraint is replaced 

by a penalty term very frequently, resulting in the 𝑄25 value frequently exceeding the value of 

CTO. 

• For a fixed value of 𝑖, the IQR and 𝑄50 for P𝛼
𝑖   generally increase in moving from 𝛼 = 0.95 to 

𝛼 = 0.99. 

• For fixed values of 𝑖 and 𝛼, the IQR and 𝑄50 for P𝛼
𝑖   increase in moving from historical to 

dynamic optimization. 

• 𝑄50 increases from P𝛼
0 to P𝛼

3 in the historical optimizations; in the dynamic optimizations, the 

increase, from P𝛼
0 to P𝛼

1 and then from P𝛼
2 to P𝛼

3, suggests that the increase has a stronger 

correlation with the imposition of the AA constraint. 

Fig. 11.2 displays the box-whisker summaries of the distribution of AA values observed in the 

resulting historical and dynamic portfolios for TO < ∞ and TO ≤ 0.4%. In all the runs, the 

imposition of the AA ≥ 0 constraint in P𝛼
1 and P𝛼

3 results in a positive distribution of AA values.99 

For the historical optimizations, the AA distribution shifts from ~22.5% negative values for P𝛼
0 

and P𝛼
2 to no negative values for P𝛼

1 and P𝛼
3. For the dynamic optimizations, the shift is from 35% 

(TO < ∞ ) and 40% (TO ≤ 0.4%) for P𝛼
0 and P𝛼

2 to no negative values for P𝛼
1 and P𝛼

3. 

 

 
99 To within a relative constraint tolerance of |10−6| imposed by the sqp solver. 
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(a) Historical, TO < ∞ (b) Historical, TO < 0.4% 

  
(c) Dynamic, TO < ∞ (d) Dynamic, TO < 0.4% 

Figure 11.2 Box-whisker summary statistics of the distribution of AA values for the historical 

and dynamic optimizations with TO < ∞ and TO ≤ 0.4%. 
 

• For a fixed value of 𝑖, the distribution statistics of AA for P𝛼
𝑖  do not differ significantly in 

moving from 𝛼 = 0.95 to 𝛼 = 0.99  under historical or dynamic optimization. The most 

notable difference is in the (positive) outlier behavior for TO ≤ 0.4% under historical 

optimization (Fig. 11.2(b)). 

• For fixed values of 𝑖 and 𝛼, the distribution statistics of AA for P𝛼
𝑖  exhibit relatively minor 

differences (in the behavior of positive outliers) in moving from TO < ∞ to TO ≤ 0.4% under 

historical optimization (Figs. 11.2(a) and (b)). 

• For fixed values of 𝑖 and 𝛼, the distribution statistics of AA for P𝛼
𝑖  exhibit a decrease in the 

IQR for P𝛼
1 and P𝛼

3 in moving from TO < ∞ to TO ≤ 0.4% under dynamic optimization (Figs. 

11.2(c) and (d)). 

Based on these observations, we note that requiring AA ≥ 0  is a “strong” requirement that can be 

achieved through the straightforward imposition of a hard constraint. 

Fig. 11.3 displays the box-whisker summaries of the distribution of SE values observed in the 

historical portfolios for TO < ∞. Imposition of the SE ≥ 0 constraint in P𝛼
2 and P𝛼

3 causes a 

significant increase in the positive value of SE for some timesteps. This behavior is seen in both 

dynamic and historical optimization, with the size of the increase becoming less prominent as the 

value of CTO decreases. Under a restricted range of y-axis values, Fig. 11.4 displays the box-

whisker summaries of the distribution of SE values observed in the resulting historical and 

dynamic portfolios for TO < ∞ and TO ≤ 0.4%. In all the runs, the imposition of the SE ≥ 0 

constraint in P𝛼
2 and P𝛼

3 results in a much more positive distribution of SE values.99 For the 

historical optimizations, the SE distribution shifts from 82%–86% negative values for P𝛼
0 and P𝛼

1 

to 1%–5% negative values for P𝛼
2 and P𝛼

3 (with the smaller percentage values occurring for TO ≤
0.4%). For the dynamic optimizations, the shift is from 34%–43% for P𝛼

0 and P𝛼
1 to less than 1.3% 

for  P𝛼
2 and P𝛼

3 (again with the smaller percentage values occurring for TO ≤ 0.4%). Unlike for 
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the AA constraint, the negative SE values occurring for P𝛼
2 and P𝛼

3 correspond to the percent of 

time the SE constraint has to be converted into a penalty term in order to achieve a non-null feasible 

set. Attempting to impose SE ≥ 0  as a hard constraint results in more frequent conversion into a 

penalty term than does the imposition of AA ≥ 0 as a hard constraint. 

 

 
Figure 11.3 Box-whisker summary statistics of the distribution of SE values for the historical 

optimizations with TO < ∞. 

 

  
(a) Historical, TO < ∞ (b) Historical, TO < 0.4% 

  
(c) Dynamic, TO < ∞ (d) Dynamic, TO < 0.4% 

Figure 11.4 Box-whisker summary statistics (under a restricted range of y-axis values) of the 

distribution of SE values for the historical and dynamic optimizations with TO < ∞ and TO ≤
0.4%. 

 

For both historical and dynamic optimization, Fig. 11.5 shows the price performance of the 

base portfolios, P0.95
0  and P0.99

0 , under changing turnover constraint. With no turnover constraint, 

the dynamic optimization outperforms the historical optimization. Dynamic optimization is more 

sensitive to increases in the turnover-constraint level; with a tighter daily turnover constraint, the 

price performance becomes more constrained. In contrast, under historical optimization, the price 

performance improves slightly under increased turnover constraint. 
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(a) P0.95

0  (b) P0.95
0  

  
(c) P0.99

0  (d) P0.99
0  

Figure 11.5 Price performance of the base portfolios P0.95
0  and P0.99

0  as a function of changing 

turnover constraint for historical (left) and dynamic (right) optimization. 

 

 

  
(a) P0.95

1  (b) P0.95
1  

  
(c) P0.95

2  (d) P0.95
2  

  

(e) P0.95
3  (f) P0.95

3  

Figure 11.6 Price performance of the performance-attribute-constrained portfolios P0.95
1 , P0.95

2 , 

and P0.99
0  as a function of changing turnover constraint for historical (left) and dynamic (right) 

optimization.  

 

Fig. 11.6 shows the cumulative price performance of each of the performance-attribute-

constrained CVaR0.95-minimized portfolios under changing turnover-constraint level computed 

using both the historical and dynamic optimizations. As with the base portfolio, in the absence of 

a turnover constraint, the price performance of the dynamic optimizations is superior to that of the 

historical optimizations. Again, the historical optimizations show price improvement under an 
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increase in the turnover constraint. For the dynamic optimizations, price performance worsens 

under the 4% daily turnover constraint, but the AA-constrained optimizations P0.95
1  and P0.95

3  show 

some improvement when the daily constraint is further reduced to 0.4%. 

 

  
CVaR0.95 

  
CVaR0.99 

Figure 11.7 Price performance of the historical (left) and dynamic (right) CVaR0.95- and 

CVaR0.99-minimized portfolios under a 0.4% turnover constraint. 

 

Fig. 11.7 summarizes the cumulative price performance of the historical and dynamic 

CVaR0.95- and CVaR0.99-minimized portfolios under a daily turnover constraint of 0.4%. 

Compared with the base portfolio, for the historical optimization, the AA-constrained portfolio, 

P𝛼
1, produces a degraded price performance, whereas the SE-constrained P𝛼

2 improves 

performance. (The price performance of the doubly constrained P𝛼
3 is intermediate between that of 

P𝛼
1 and P𝛼

2.) For the dynamic CVaR0.95 minimization, the AA-constrained P0.95
1  portfolio produces 

improved price performance, whereas the SE-constrained P0.95
2  produces no significant price 

improvement compared to the base portfolio P0.95
0 . In contrast, for the dynamic CVaR0.99 

minimization, all three performance-attribute-constrained optimizations show improved price 

performance compared to P0.99
0 . 

Fig. 11.8 summarizes the risk measures for the historical and dynamic CVaR0.95-minimized 

portfolios under a daily turnover constraint of 0.4%. The measures are computed using a one-year 

moving window. Fig. 11.9 presents box-whisker summaries of the statistics of the plots in Fig. 

11.8. The worst MDD occurs most frequently for the EQW portfolio. The difference is most 

discernible for dynamic optimization, in which P0.95
1  and P0.95

3  have low-value, narrow-spread 

IQRs. In terms of SR, SS, and RR, examination of the median values in Fig. 11.9 shows that P0.95
0  

and P0.95
2  tend to rank comparably and P0.95

1  and P0.95
3  also tend to rank comparably. Under historical 

optimization, the P0.95
0 –P0.95

2  pair tends to perform the best, whereas under dynamic optimization, 

the P0.95
1 –P0.95

3  pair tends to perform the best. (The exception is the performance of the median 

value of RR for P0.95
3 , which has the lowest value.) For dynamic optimization, EQW has the lowest 

median SR, SS, and RR values, whereas for historical optimization, it has the lowest median RR 

value but has intermediate rank in median SR and SS values. Interestingly, all four portfolios 

P0.95
𝑖 , 𝑖 = 1,…, have a large number of high-value RR outliers under historical optimization. 
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Maximum drawdown 

  
Sharpe ratio 

  
Sortino–Satchell ratio 

  

Rachev ratio 

Figure 11.8 Performance of annual MDD, SR, SS, and RR for historical (left) and dynamic 

(right) CVaR0.95-minimized portfolios under a 0.4% turnover constraint. 

 

 
   

Historical 
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Dynamic 

Figure 11.9 Box-whisker summary of annual MDD, SR, SS, and RR for historical and dynamic 

CVaR0.95-minimized portfolios under a 0.4% turnover constraint. 

 

Fig. 11.10 summarizes the total-time-period (12-year) risk measures for the 𝛼 = 0.95 

portfolios constrained by a daily turnover of 0.4%. All the MDDs reflect behavior related to the 

onset of the COVID-19 pandemic. The EQW portfolio has the largest drawdown, and the historical 

portfolios have the smallest. The drawdown values for the various historical portfolios differ by at 

most 0.1%, whereas those for the dynamic portfolios differ by at most 2.5%, with P0.95
1  and P0.95

3  

performing the best in the dynamic case. Interestingly, the EQW portfolio has the best 12-year SR 

and RR, though it has the worst SS. Under dynamic optimization, the performance-attribute-

constrained portfolios outperform the base case P0.95
0  with respect to SR, SS, and RR. Under 

historical optimization, P0.95
2   consistently outperforms P0.95

0  over this 12-year period. 

 

    
MDD SR SS RR 

Figure 11.9 Twelve-year MDD, SR, SS, and RR for historical and dynamic CVaR0.95-

minimized portfolios under a 0.4% turnover constraint. 
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Chapter 12 
Option Pricing 

 

In this chapter, we simultaneously address three innately coupled topics: asset pricing, option 

pricing, and the prediction of future asset volatility. The intimate coupling of these three can be 

made apparent by a brief recapitulation of the Black−Scholes−Merton (Black and Scholes, 1973; 

Merton, 1973) model. (Here we follow Duffie, 2001.) The Black−Scholes−Merton option pricing 

model has the following components: a risky asset 𝒮; a riskless asset ℬ (a bond); an option 𝒞 

whose underlying asset is 𝒮; and a trading strategy (𝑎𝑡, 𝑏𝑡) for 𝒮 and ℬ that is self-financing and, 

relative to the price of  𝒞, arbitrage-free. Assume the price process for 𝒮 is given by geometric 

Brownian (equivalently log-normal) motion, 

𝑆𝑡 = 𝑆0𝑒
𝑋𝑡 , 𝑡 ≥ 0,   𝑆0 > 0, (12.1) 

having normally distributed cumulative log-return (“return” for brevity), 

𝑋𝑡 = ln(𝑆𝑡) − ln(𝑆0) =  𝜇𝑡 + 𝜎𝑊𝑡,    𝜇 ∈ 𝑅,   𝜎 > 0, (12.2) 

where 𝔹 = (𝑊𝑡, 𝑡 ≥ 0) is a standard Brownian motion. The constant 𝜇 is the drift term and the 

standard deviation 𝜎 is the volatility of the price. The stock price is assumed to be an Ito process 

obeying 

𝑑𝑆𝑡 = (𝜇 + 𝜎2 2⁄ )𝑑𝑡 + 𝜎𝑑𝑊𝑡. (12.3) 

Assume ℬ has the price process 

𝐵𝑡 = 𝐵0𝑒
𝑟𝑓𝑡, 𝑡 ≥ 0,   𝐵0 > 0, (12.4) 

where 𝑟𝑓 is the risk-free rate. The bond price is trivially an Ito process obeying the ODE 

𝑑𝐵𝑡 = 𝑟𝑓𝐵𝑟𝑑𝑡. (12.5) 

Consider a European call option with strike price 𝐾 and maturity time 𝑇 having the price process 

𝐶(𝑆𝑡, 𝑡; 𝐾, 𝑇). The trading strategy is self-financing if 

𝑎𝑡𝑆𝑡 + 𝑏𝑡𝐵𝑡 = 𝑎0𝑆0 + 𝑏0𝐵0 +∫ 𝑎𝑤𝑑𝑆𝑤

𝑡

0

+∫ 𝑏𝑤𝑑𝐵𝑤

𝑡

0

 (12.6) 

for all 𝑡 ≥ 0, and guarantees an arbitrage-free market (𝒮,ℬ, 𝒞)  provided that 

𝑎𝑡𝑆𝑡 + 𝑏𝑡𝐵𝑡 = 𝐶(𝑆𝑡, 𝑡, 𝑇, 𝐾) (12.7) 

for all 𝑡 ∈ [0, 𝑇), where (12.7) satisfys the boundary condition at maturity, 𝑎𝑇𝑆𝑇 + 𝑏𝑇𝐵𝑇 =

max (𝑆𝑇 − 𝐾, 0).  This boundary condition guarantees that any losses or gains undertaken by a 

long position in 𝒮, ℬ are, at maturity, precisely hedged by a short position in the call option. Under 

these conditions100, Black and Scholes (1973) and Merton (1973) derived the value of the call 

option for all 𝑡 ∈ [0, 𝑇), 

𝐶(𝑆𝑡, 𝑡, 𝑇, 𝐾) = 𝐶(𝑆𝑡, 𝑇 − 𝑡, 𝐾) = 𝑆𝑡Φ(𝑈) − 𝑒
−𝑟𝑓(𝑇−𝑡)𝐾Φ(𝑈 − 𝜎√𝑇 − 𝑡), (12.8) 

 
100 There are additional assumptions implied in the Black−Scholes−Merton formulation, one being that investors are 

risk-neutral (indifferent to risk) when making investment decisions. 
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𝑈 =
ln(𝑆𝑡 𝐾⁄ ) + (𝑟𝑓 + 𝜎

2 2⁄ )(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
, 

where Φ(∙) is the cumulative standard normal distribution function. Given market values for: the 

risk-free rate 𝑟𝑓; the asset price 𝑆𝑡; and the price of a call option with strike price 𝐾 and maturity 

time 𝑇; (12.8) can be solved numerically for the volatility 𝜎 of the risky asset at any future time 

𝑡 ∈ [0, 𝑇). Such a computed value is referred to as an implied volatility and is an example of 

volatility metrics that attempt to utilize current market sentiment (pricing) to measure future risk. 

Equations (12.1) through (12.8) demonstrate the tight coupling between asset prices, option prices, 

and implied volatility.   

In addition to continuum models such as the Black−Scholes−Merton formula, discrete models 

based on binomial or trinomial trees (Cox et al., 1979), discrete stochastic volatility models (Nögel, 

2004), and Monte Carlo simulation (Boyle, 1977; Broadie and Glasserman, 1996; Carriere, 1996) 

have all been used to price derivative contracts. All contain the same set of fundamental 

components: a risky asset 𝒮; a riskless asset ℬ; a derivative 𝒞 whose underlying asset is 𝒮; and a 

trading strategy (𝑎𝑡, 𝑏𝑡) for 𝒮 and ℬ that is self-financing and, relative to the price of  𝒞, arbitrage-

free. These methods require more sophisticated methods to achieve an equivalent (risk-neutral) 

martingale measure either through Esscher transform (Gerber and Shiu, 1994) or mean correction 

(Schoutens, 2003; Yao et al., 2016) to compute the option pricing under a risk-neutral formulation. 

Computations of the implied volatility from (12.8) (or from any of the alternate derivative 

pricing methods) using market data reveal immediately that the implied volatility for any asset 

varies with 𝐾 (equivalently with “moneyness” 𝐾 𝑆𝑡⁄ ) in a manner that evokes either the shape of 

a “smile” or a “smirk”. Consequently, implied volatility has been criticized as follows: “A smiley 

implied volatility is the wrong number to put [sic] in the wrong formula to obtain the right price.” 

(Rebonato, 1999; page 78). The presence of the characteristic smile/smirk seen in implied volatility 

computations, which characterizes different volatility values for options that are differentially in- 

and out-of-the-money, contradicts the fundamental option-pricing model result (12.8) that the 

volatility should be constant. Taking one approach to correct this, Hull and White (1987) and 

Heston (1993) randomized the volatility parameter (asset return standard deviation) in the 

Black−Scholes−Merton model. 

As they are irrevocably coupled, improved option pricing models (and hence the potential for 

improved volatility prediction) must begin with improved asset pricing models. A new approach 

to asset pricing was adopted by Carr et al. (2003) based upon ideas by Geman et al. (2001) and 

Clark (1973). Clark conjectured that price processes are controlled by a random clock, which 

dictates arrival time of financial information and hence provides the underlying measure of 

economic activity. Clark used transaction volume as a proxy for this measure. We briefly expand 

upon this random clock concept of intrinsic or business time before proceeding with our discussion 

of these improved models. 

 

Intrinsic time. In finance, the phrase “intrinsic time” was first used by Mandelbrot and Taylor 

(1967) to refer to the fact that market information does not arrive continuously in time but rather 

arrives in a series of events which, when measured in the continuum of physical time, occur 

differentially spaced. The prototypical example is market orders (“ticks”) for any asset, which 
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display sizeable variation in terms of timing and number of orders throughout the trading day.101 

Asset value (price) information therefore arrives as discrete events spaced at different time 

intervals. In addition, the price change information may be more-or-less informative: small price 

changes provide less information than larger changes; consecutive price changes having opposite 

signs provide less information than consecutive price changes having the same sign. Thus, intrinsic 

time is characterized by the occurrence, magnitude and sign of each event. Several works have 

been devoted to developing the concepts of intrinsic time and applying them to financial time 

series; see Guillaume et al. (1997), Tsang (2010), and Aloud et al. (2011). 

Under the intrinsic time viewpoint, no information arrives and hence “no time has passed” 

between events. One way to conceptualize intrinsic time is to think of the seconds-hand of an 

analog clock that doesn’t move (tick) regularly, but rather advances randomly and makes a ticking 

noise of varying volume. No time passes until the hand advances, and the volume of the tick 

quantifies the informational content. 

 

Subordinated pricing models. The assumption that the log-price of the underlying risky asset 

has a normal distribution provides the basis of the Black−Scholes−Merton model. There are, so-

called, stylized facts (asymmetry, heavy tails) characterizing asset returns that contradict that 

assumption. Unfortunately, distributions such as Student’s 𝑡, which exhibits heavy tails, and 

stable-non-Gaussian, which exhibit skewness and heavy tails, while potentially useful for asset 

pricing, are not amenable for use by the classic option pricing methods using either the Esscher 

transform (Gerber and Shiu, 1994) or mean correction (Schoutens, 2003; Yao et al., 2016) because 

they cause required integrals to diverge (Cassidy et al., 2010). To deal with the non-Gaussian 

behavior of asset returns, models based on subordinated Brownian motion have been introduced 

(Mandelbrot and Taylor, 1967; Clark, 1973). In a subordinated Brownian motion model, the return 

process (12.2) is replaced by 

= 𝜇𝑡 + 𝜌𝒯(𝑡) + 𝜎𝑊𝒯(𝑡). (12.9) 

Here, 𝕋 = (𝒯(𝑡), 𝑡 ≥  0, 𝒯(0) = 0 ) is a Lévy subordinator; 𝑊𝒯(𝑡) is a singly subordinated 

Brownian motion; and 𝑋𝑡 is therefore a singly subordinated return process. The stochastic process 

𝕋 defined on a stochastic basis (Ω , ℱ, 𝔽 = (ℱ𝑡 , 𝑡 ≥ 0), 𝑃) is said to be a Lévy process if the following 

hold (Bochner, 1955; Sato, 1999; Schoutens, 2003). 

• 𝒯(0) = 0   𝑃 − almost surely. (I.e., 𝑃(𝒯(0) = 0) = 1.) 
• 𝕋 is a process with independent increments; for any partition 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 < ∞, 

the increments 𝒯(𝑡𝑖) − 𝒯(𝑡𝑖−1), 𝑖 = 1,2, . . . , 𝑛 are independent. 

• 𝕋 is a process with stationary increments; for any 0 ≤  𝑠 < 𝑡, the increment 𝒯(𝑡) − 𝒯(𝑠) 
has the same distribution as 𝒯(𝑡 − 𝑠), that is, 𝒯(𝑡) − 𝒯(𝑠) ~ 𝒯(𝑡 − 𝑠). (We use ~ to 

denote “equal in distribution” or “equal in probability law”.) 

• 𝕋 is continuous in probability process; for every 𝜀 > 0 and 𝑡 ≥  0, there exists ℎ𝜀 ,𝑡 > 0 

such that 𝑃(|𝒯(𝑡 + ℎ𝜀 ,𝑡) − 𝒯(𝑡)| > 𝜀 ) < 𝜀. 

Because 𝒯(0) = 0, the trajectories of a Lévy process can take only nonnegative values. Any Lévy 

process 𝕋 with nondecreasing trajectories is called a Lévy subordinator. The subordinated return 

 
101 “The different evolution of price series on different days is due to the fact that information is available to traders 

at a varying rate. On days when no new information is available, trading is slow, and the price process evolves slowly. 

On days when new information violates old expectations, trading is brisk, and the price process evolves much faster.” 

(Clark, 1973) 
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process 𝑋𝑡 in (12.9) is a Lévy process (Sato, 1999; Chapter 6), and thus a martingale. By the 

fundamental asset pricing theorem (Delbaen and Schachermayer, 1994), the market (𝒮,ℬ, 𝒞)  is 

free of arbitrage. 

Each subordinator introduces additional parameters to the return model, which can be used to 

model additional behaviors. As the Lévy subordinator takes the role of a time parameter, it acts as 

a seconds-hand, defining and providing information (direction and magnitude) on each event. 

Considering various distribution models for the subordinator, Hurst et al. (1997) used the method 

of subordination to model the leptokurtic characteristics of market index returns. Geman et al. 

(2001) investigated pure jump processes for the subordinator. Carr et al. (2003) extended this line 

of investigation using normal inverse Gaussian and variance gamma examples of pure jump Lévy 

processes. Carr and Wu (2004) carried the subordinated asset pricing concept into option pricing 

using time-changed Lévy processes.102 Klingler et al. (2013) introduced two new six-parameter 

processes based on time-changed tempered stable distributions and developed the corresponding 

option pricing models. 

Studies have demonstrated that single subordinated models cannot resolve some aspects of 

observed market behavior. For example, Lundtofte and Wilhelmsson (2013) and Shirvani et al. 

(2021a) show that single subordination fails to explain the equity premium puzzle. To resolve this 

and to provide greater flexibility to model higher moments (skewness and kurtosis) observed in 

asset return behavior, Shirvani et al. (2020) introduced the concept of double subordination. The 

first subordinator is interpreted as being responsible for transforming a Gaussian distribution of 

returns in unit time to a distribution of skewed and heavy tailed returns. The second subordinator 

transforms the now skewed, heavy-tailed-distributed return events from unit-time spacing to 

random spacing. (In their 2020 article, these subordinators were interpreted in terms of time-

varying investor views, as per behavioral finance dictum that investors view positive and negative 

returns differently, which – in turn – affects investor actions and, consequently, asset and option 

pricing.) This work demonstrated that double subordinated log-return processes produce heavy-

tailed distributions with heavier tails than single subordinated models and are capable of capturing 

the skewness and kurtosis observed in distributions of asset log-returns. Shirvani et al. (2021a) 

further demonstrated that the high value for the risk-aversion coefficient, which gives rise to the 

equity premium puzzle, can be obtained from a return process driven by a double subordinated 

model. In another application, Shirvani et al. (2021b) used a double subordinated Lévy process to 

model the high volatility of bitcoin.  

 

Volatility. Volatility refers to the degree of unpredictability in a market. The volatility can be 

quantified in a variety of ways. Historical volatility measures the dispersion of a portfolio’s returns 

using the (moving-window averaged) standard deviation of past daily log-returns. The concept of 

measuring an implied volatility was introduced above in the context of the Black−Scholes−Merton 

model. Unlike historical volatility, implied volatility is forward looking. The best-known (and first 

practical) implementation of implied volatility is the Cboe VIX, developed to reflect volatility 

expectations for the S&P 500 stock index (SPX). The intention behind the VIX model (Cboe 

 
102 Fallahgoul and Nam (2020) have pointed out a subtle error in the Carr and Wu paper. By introducing a correlation 

between the driving Lévy process and its time-subordinator, the resulting Carr–Wu option pricing model is no longer 

arbitrage-free. For this reason, each subordinator should be independent of each other and of the driving (Brownian 

or Lévy) process. 
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Exchange, Inc., 2019) is to reflect all available market information determining SPX future 

volatility, provided that option markets are efficient103. Specifically, the value of the VIX is 

intended to measure the volatility of SPX expected in 30 days and is given by a weighted portfolio 

of near-term and next-term, out-of-the-money, European put and call options with more than 23 

days and less than 37 days to expiration. The options include those with standard 3rd Friday 

expiration dates and weekly options that expire on the remaining Fridays of each month. As an 

example of a different appraoch, Petrov et al. (2019) develop an instantaneous volatility measure 

based upon intrinsic time analysis of price time series and used the measure to explore seasonality 

patterns in the volatility of selected exchange rates. 

Section 12.1 summarizes the double subordinated model for the case in which both 

subordinators are independent, inverse Gaussian processes. The model is developed in terms of 

the characteristic function of the log-return process. Section 12.2 describes option pricing under 

this model using the mean-correction martingale measure of Yao et al. (2016) and the fast Fourier 

transform (FFT) method of Carr and Madan (1998). Section 12.3 provides a numerical application 

where the double subordinated model is fit to the price process of one of the REIT portfolios 

developed in Chapter 4, specifically the domestic, long-only, T95 portfolio subjected to 4% daily 

turnover constraint. For brevity in this chapter, this portfolio will be referred to as the T95 

portfolio. An in-depth discussion is presented for estimating the model parameters as well as for 

setting numerical parameters needed in the Carr-Madan FFT method. Prices are developed for 

European call and put options with the T95 portfolio as the underlying risky asset. The double 

subordinated method leads naturally to a new measure of volatility, which we refer to as the NDIG 

volatility. This volatility relies on asset prices (and not on option prices). We compute the NDIG 

volatility for the T95 portfolio over an in-sample data set. The results are compared to those 

obtained using historical volatility as well as those obtained by using the Cboe VIX implied 

volatility methodology. As the VIX methodology requires option prices, call and put option prices 

computed from the in-sample data using the double-subordinated method are used. 

 

12.1 Double Subordinated Pricing Models 

 

Under double subordination, the return process (12.2) is replaced by 

𝑋𝑡 = 𝜇𝑡 + 𝛾𝑈(𝑡) + 𝜌𝒯(𝑈(𝑡)) + 𝜎𝑊𝒯(𝑈(𝑡)), (12.10) 

where the triplet (𝑊𝑡, 𝒯(𝑡), 𝑈(𝑡), 𝑡 ≥  0) consists of independent processes generating a stochastic 

basis (Ω , ℱ, 𝔽 = (ℱ𝑡 , 𝑡 ≥ 0), 𝑃) representing the natural world. Here {𝑊𝑡, 𝑡 ≥ 0} is again a standard 

Brownian motion while 𝒯(𝑡) with 𝒯(0) = 0 and 𝑈(𝑡) with 𝑈(0) = 0 are independent Lévy 

subordinators. The process 𝒯(𝑈(𝑡)) is a double subordinator process, hence (12.10) is a double 

subordinated return process. 

Consider the case when the subordinators 𝒯(𝑡) and 𝑈(𝑡) are inverse Gaussian (IG) Lévy 

processes104; that is, 𝒯(1)~IG(𝜆𝒯 , 𝜇𝒯) having the probability density fuction (PDF) 

 
103 The accuracy, and indeed the ability, of the VIX to predict future volatility is a matter of debate. See Goldstein and 

Taleb (2007) and Adhikari and Hilliard (2014). 
104 We have already indicated that stable, non-Gaussian processes are inappropriate choices for subordinators due to 

their heavy tails. Use of (finite variation) gamma processes as subordinators in appropriate but may require 

additional Brownian motions, which would increase the number of parameters in the model. 
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𝑓𝒯(1)(𝑥) = √
𝜆𝒯
2𝜋𝑥3

exp (−
𝜆𝒯(𝑥 − 𝜇𝒯)

2

2 𝜇𝒯
2  𝑥

),   𝜆𝒯 > 0,   𝜇𝒯 > 0,   𝑥 ≥ 0, (12.11) 

and 𝑈(1)~IG(𝜆𝑈, 𝜇𝑈). Shirvani et al. (2020) referred to 𝒯(𝑈(𝑡)) as the double IG subordinator 

and the resulting 𝑋𝑡 as the normal double IG (NDIG) log-price process. The probability 

distribution for 𝑋𝑡 can be written as a double integral (Shirvani et al., 2020; Supplementary 

Appendix A.10), which is unfortunately analytically intractable. However, the characteristic 

function (CF) (the Fourier transform of the probability density function) 𝜑𝑋𝑡 (𝑣) is amenable to 

analytic evaluation. Using the identity 

𝜑𝑋𝑡(𝑣) = 𝐸(𝑃)[𝑒𝑖𝑣𝑋𝑡] = (𝐸(𝑃)[𝑒𝑖𝑣𝑋1])
𝑡
= (𝜑𝑋1(𝑣))

𝑡

, (12.12) 

 the CF for 𝑋1 is given by (Shirvani et al., 2020; supplementary material Appendix A.11) 

𝜑𝑋1(𝑣) = 𝐸(𝑃)[𝑒𝑖𝑣𝑋1] ≝ exp{𝜓𝑋1(𝑣)} 

= exp{𝑖𝑣𝜇 +
𝜆𝑈
𝜇𝑈
[1 − (1 −

2𝜇𝑈
2

𝜆𝑈
{
𝜆𝒯
𝜇𝒯
[1 − √1 −

𝜇𝒯
2

𝜆𝒯
(2𝑖𝑣𝜌 − 𝜎2𝑣2)] + 𝑖𝑣𝛾})

1 2⁄

]} . 
(12.13) 

Here, 𝐸(𝑃)[∙] denotes expectation under the probability 𝑃 and 𝜓𝑋1(𝑣) is referred to as the 

characteristic exponent. 

The NDIG model (12.10), (12.13) has eight parameters, 𝜇, 𝜎, 𝛾, 𝜌, 𝜇𝑈 , 𝜆𝑈, 𝜇𝒯 , 𝜆𝒯, which 

provides a challenge for fitting to data. Appendix A provides the proof that only six of these 

parameters are identifiable within the model. To set the remaining two, consider the expectation 

𝐸(𝑃)[𝑋1] = 𝜇 + 𝛾𝐸(𝑃)[𝑈(1)] + 𝜌𝐸(𝑃)[𝒯(𝑈(1))].  

As the processes 𝑈 and 𝒯 are independent IG, to uniquely identify 𝛾 and 𝜌 we can require 

𝐸(𝑃)[𝑈(1)] = 𝜇
𝑈
= 1 and 𝐸(𝑃)[𝒯(𝑈(1))] = 𝜇

𝑈
𝜇𝒯 = 1 → 𝜇𝒯 = 1 . (12.14) 

Using (12.14), the set of identifiable model parameters becomes 𝜇, 𝜎, 𝛾, 𝜌,  𝜆𝑈, 𝜆𝒯 . 

One source of data for fitting these six parameters are the central moments of the NDIG. The 

moment generating function (MGF) 𝑀𝑋1(𝑤) for 𝑋1, which generates the moments of its 

probability distribution, is obtained by evaluating 𝐸(𝑃)[𝑒𝑤𝑋1], 𝑤 ∈ 𝑅. This can be obtained from 

(12.13) using 𝑤 = 𝑖𝑣. The MGF is written in terms of the cumulant generating function 𝐾𝑋1(𝑤), 

𝑀𝑋1
(𝑤) = 𝐸(𝑃)[𝑒𝑤𝑋1] = exp{𝜓𝑋1(−𝑖𝑤)} ≝ exp{𝐾𝑋1(𝑤)}. (12.15) 

Paralleling (12.12), note that 𝑀𝑋𝑡(𝑤) = exp{𝐾𝑋1(𝑤)𝑡}. From (12.13), 𝐾𝑋1(𝑤) can be written as 

𝐾𝑋1(𝑤) = 𝜇𝑤 + 𝜆𝑈 (1 −√𝑔(𝑤)), 

𝑔(𝑤) = 1 − 2
𝜆𝒯

𝜆𝑈
(1 − √ℎ(𝑤)) − 2

𝛾

𝜆𝑈
𝑤, 

ℎ(𝑤) = 1 − 2
𝜌

𝜆𝒯
𝑤 −

𝜎2

𝜆𝒯
𝑤2. 

(12.16) 
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The first four central derivatives of 𝐾𝑋1(𝑤) are 

𝑑 𝐾𝑋1(𝑤) 𝑑𝑤⁄ |
𝑤=0

= 𝜇 + s , 

𝑑2𝐾𝑋1(𝑤) 𝑑𝑤
2⁄ |
𝑤=0

= 𝜎1 +
𝑠2

𝜆𝑈
 , 

𝑑3𝐾𝑋1(𝑤) 𝑑𝑤
3⁄ |
𝑤=0

= 3(𝜎1𝑐 +
𝑠3

𝜆𝑈
2) , 

𝑑4𝐾𝑋1(𝑤) 𝑑𝑤
4⁄ |
𝑤=0

= 3 [(
1

𝜆𝒯
+
1

𝜆𝑈
) 𝜎1

2 + 2𝜎1 (𝑐
2 + (

𝜌

𝜆𝒯
)
2

+ 2 (
𝑠

𝜆𝑈
)
2

) + 5
𝑠4

𝜆𝑈
3] , 

𝑠 = 𝛾 + 𝜌,      𝜎1 =
𝜌2

𝜆𝒯
+ 𝜎2,       𝑐 =

𝜌

𝜆𝒯
+
𝑠

𝜆𝑈
 . 

(12.17) 

The first four centered moments of 𝑋1 are 

𝐸(𝑃)[𝑋1] = 𝜇 + s , 

Var[𝑋1] = 𝜎1 +
𝑠2

𝜆𝑈
 , 

Skew[𝑋1] = 3

(𝜎1𝑐 +
𝑠3

𝜆𝑈
2)

(𝜎1 +
𝑠2

𝜆𝑈
)
3 2⁄
 , 

Kurt[𝑋1] = 3

[(
1
𝜆𝒯
+
1
𝜆𝑈
)𝜎1

2 + 2𝜎1 (𝑐
2 + (

𝜌
𝜆𝒯
)
2

+ 2 (
𝑠
𝜆𝑈
)
2

) + 5
𝑠4

𝜆𝑈
3]

(𝜎1 +
𝑠2

𝜆𝑈
)
2  . 

(12.18) 

Equation (12.18) provides four conditions for fitting the six parameters of the model. The 

numerical example in section 12.3 discusses the further conditions needed for the parameter fits. 

 

12.2 Option Pricing under the Double Subordinated IG Model 

 

We assume the price process (12.1) for the T95 portfolio is driven by a double subordinated IG 

process; i.e., its return process (12.10) is NDIG. To price a European call option with 𝒮 = T95 as 

the underlying asset, we search for an equivalent martingale measure (EMM) 𝑄 of 𝑃 such that the 

discounted price process, 𝑒−𝑟𝑓𝑡 𝑆𝑡, is a martingale under 𝑄 (Duffie, 2001, Chapter 6). Following 

Yao et al. (2016; Theorem 3.2), the mean-correction martingale measure method can be used to 

find an EMM for 𝑋𝑡. Parametrizing this measure as 𝑄(𝑚), the mean-correction martingale method 

requires 

𝑄(𝑚)( 𝑋𝑡 −𝑚𝑡 ≤ 𝑥) = 𝑃( 𝑋𝑡 ≤ 𝑥), 𝑚 ∈ 𝑅, (12.19) 

which has the unique solution 𝑄 = 𝑄(𝑚0) with 𝑚0 = 𝑟𝑓 − 𝐾𝑋1(1). If the price and return processes 

for 𝒮 are given by (12.1) and (12.10) respectively, using mean-correction martingale measure the 

risk-neutral price 𝑆𝑡
(𝑄)

 for 𝒮 is given by 
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𝑆𝑡
(𝑄) =

𝐵𝑡𝑆𝑡
𝑀𝑋𝑡(1)

= 𝑆0exp{(𝑟𝑓 − 𝐾𝑋1(1))𝑡 + 𝑋𝑡}, 𝑡 ∈ [0, 𝑇]. (12.20) 

The CF of the log-price, ln (𝑆𝑡
(𝑄)), is 

𝜑
ln(𝑆𝑡

(𝑄)
)
(𝑣) = 𝑆0

𝑖𝑣exp {(𝑖𝑣 [𝑟𝑓 − 𝐾𝑋1(1)] + 𝜓𝑋1(𝑣)) 𝑡}. (12.21) 

Then, for the underlying asset 𝒮 having price 𝑆𝑡 on day 𝑡, a European call option 𝒞 expiring on 

day 𝑡 + 𝑇 (maturing 𝑇 days after day 𝑡) has the fair price 

𝐶(𝑆𝑡, 𝑇, 𝐾 ) = 𝑒−𝑟𝑓𝑇 E(𝑄) [max (𝑆𝑇
(𝑄) − 𝐾 , 0 )]. (12.22) 

Carr and Madan (1998) show how to use the fast Fourier transform (FFT) to value options 

when the CF of the log-price of the underlying asset is known analytically. They considered the 

modified option price 𝐶𝑎(𝑆𝑡, 𝑇, 𝑘 ) = 𝑒𝑎𝑘𝐶(𝑆𝑡, 𝑇, 𝑘 ) where 𝑘 = ln(𝐾), which, for a range of 

values 𝑎 > 0, guarantees that 𝐶𝑎(𝑆𝑡, 𝑇, 𝑘 ) is square integrable over 𝑘 ∈ (−∞,∞). The starting 

point for applying the FFT is their derived relationship 

𝐶(𝑆𝑡, 𝑇, 𝑘) =
𝑒−𝑟𝑓𝑇−𝑎𝑘

𝜋
∫ 𝑒−𝑖𝑣𝑘

𝜑
ln(𝑆𝑇

(𝑄)
)
[−𝑖(1 + 𝑎 + 𝑖𝑣)]

(𝑎 + 𝑖𝑣)(1 + 𝑎 + 𝑖𝑣)

∞

𝑜

𝑑𝑣 . (12.23) 

Numerical solution of this integral involves two fundamental concerns, an optimum value for 𝑎 

and control over the error produced by truncating the integral (12.23) over a finite domain 𝑣 ∈
[0, 𝑣max]. These concerns, which are dependent on the price process, are addressed in section 

12.3.1.  

Constructing the implied volatility surface for call prices requires estimating (12.23) over a 

discrete mesh of values of (𝑘, 𝑇). Put options can then be valued assuming put–call parity holds. 

Implementing an FFT requires a numerical discretization of (12.23) of the form 

�̂�𝑝 = ∑ exp [−𝑖
2𝜋

𝑀
𝑗𝑝] 𝑍𝑗

𝑀−1

𝑗=0

, 𝑝 = 0, … ,𝑀 − 1, (12.24) 

which the FFT method can solve in 𝑂(𝑀 ln2(𝑀)) operations. Writing (12.23) as 

𝐶(𝑆𝑡, 𝑇, 𝑘) =
𝑒−𝑟𝑓𝑇−𝑎𝑘

𝜋
Ψ(𝑘),   where Ψ(𝑘) = ∫ 𝑒−𝑖𝑣𝑘ℎ(𝑆𝑡, 𝑟𝑓 , 𝑣)

𝑣max

𝑜

𝑑𝑣 , (12.25) 

discretization of Ψ(𝑘) using the trapezoid rule gives 

Ψ(𝑘) = ∑ exp (−𝑖𝑣𝑗𝑘)ℎ(𝑆𝑡, 𝑟𝑓 , 𝑣𝑗)𝑤𝑗∆𝑣

𝑁−1

𝑗=0

 , (12.26) 

where 𝑣𝑗  =  𝑗∆𝑣,  𝑗 =  0, . . . , 𝑁 − 1 with ∆𝑣 =  𝑣max (𝑁 − 1)⁄ . The 𝑤𝑗 are the trapezoid rule 

weights, 𝑤0 = 𝑤𝑁−1 = 1 2⁄ , 𝑤𝑗 = 1, 𝑗 = 1,… ,𝑁 − 2. Consider the discretization of 𝑘 over a 

range [−�̅�𝑙 , �̅�ℎ] with 𝑁 equally spaced points, 𝑘𝑝 = −�̅�𝑙 + 𝑝∆𝑘, 𝑝 =  0, . . . , 𝑁 − 1 with 𝑘𝑁−1 =

�̅�ℎ.105 For simplicity, consider �̅�𝑙 = �̅�ℎ = �̅�.  On this grid, (12.26) becomes 

 
105 This discretizes strike prices 𝐾 = 𝑒𝑘 over the range [𝑒−�̅�𝑙 , 𝑒�̅�ℎ]. As the 𝑘-grid is evenly spaced, strike prices will 
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Ψ(𝑘𝑝) = ∑ exp(−𝑖 𝑗 ∆𝑣 𝑝 ∆𝑘) exp(𝑖�̅�𝑣𝑗) ℎ(𝑆𝑡, 𝑟𝑓 , 𝑣𝑗)𝑤𝑗∆𝑣

𝑁−1

𝑗=0

,   

𝑝 = 0,… ,𝑁 − 1, 

(12.27) 

which is identical to (12.24) with the identifications 𝑀 =  𝑁, 2𝜋 𝑀⁄ = ∆𝑣∆𝑘,  �̂�𝑝 = Ψ(𝑘𝑝), and 

𝑍𝑗 = exp(𝑖�̅�𝑣𝑗) ℎ(𝑆𝑡, 𝑟𝑓 , 𝑣𝑗)𝑤𝑗∆𝑣. The second identification specifies the size of the 𝑘-grid 

spacing ∆𝑘 = 2𝜋 (𝑁∆𝑣)⁄  and reflects the familiar FFT tradeoff between the spans covered in the 

“space” and “frequency” domains, 

𝑣max �̅�  =
 𝜋(𝑁 − 1)2

𝑁
~𝜋𝑁. (12.28) 

The computations in section 12.3 use 𝑁 = 210 = 1024. 

 

12.3 Empirical Example 

 

We illustrate the double subordinated method of sections 12.1 and 12.2 using the T95 REIT 

portfolio as the underlying asset. To further reduce the parameter set 𝜇, 𝜎, 𝛾, 𝜌, 𝜆𝑈, 𝜆𝒯, assume that 

the subordinator 𝑈(𝑡) is used to model the intrinsic time of the return process, while the 

subordinator 𝒯(𝑡) is used to model the return skewness and heavy tailed behavior. In this model 

it is reasonable to require no 𝛾𝑈(𝑡) term in (12.10), i.e. 𝛾 = 0. Under this requirement, the first 

four moments of 𝑋1 reduce to 

𝐸(𝑃)[𝑋1] = 𝜇 + 𝜌 , 

Var[𝑋1] = 𝜎2 + 𝑑𝜌2 , 

Skew[𝑋1] = 3
𝑑𝜌(𝜎2 + 𝜌2)

(𝜎2 + 𝑑𝜌2)3 2⁄
 , 

Kurt[𝑋1] =

3𝜎1
2𝑑 + 6𝜌2𝜎1 [𝑑

2 +
1

𝜆𝑇
2 +

2

𝜆𝑈
2] + 15𝜌

4 1

𝜆𝑈
3

(𝜎2 + 𝑑𝜌2)2
 , 

𝜎1 =
𝜌2

𝜆𝒯
+ 𝜎2,      𝑑 =

1

𝜆𝑇
+
1

𝜆𝑈
 . 

(12.29) 

The five remaining parameters 𝜇, 𝜎, 𝜌, 𝜆𝑈, 𝜆𝒯 can be estimated by the minimization106 

min
 𝜇,𝜎,𝜌,𝜆𝑈,𝜆𝒯

{(∆𝑀1)
2 + (∆𝑀2)

2 + (∆𝑀3)
2 + (∆𝑀4)

2 + (∆𝐶𝐹)2}, 

∆𝑀1 = 1 − 𝐸
(𝑃)[𝑋1] 𝐸

(𝑃)[𝑟T95]⁄  , ∆𝑀2 = 1 − Var[𝑋1] Var[𝑟T95]⁄  ,

∆𝑀3 = 1 − Skew[𝑋1] Skew[𝑟T95] ,⁄ ∆𝑀4 = 1 − Kurt[𝑋1] Kurt[𝑟T95] ,⁄
 

(12.30) 

 
be exponentially spaced. 
106 An alternate minimization that uses the first five normalized moment differences ∆𝑀1, … , ∆𝑀5 must begin to 

deal with the fact that higher order moments of  𝑟T95 get noisier and noisier, providing no valid signal beyond a 

certain order. 
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(∆𝐶𝐹)2 = ∫ |1 − 𝜑𝑋1(𝑣) ecf(𝑣, 𝑟T95)⁄ |
2
𝑑𝑣

∞

−∞

 . 

In (12.30), 𝑟T95 denotes the observed return time series 𝑟T95,𝑗, 𝑗 = 1,… , 𝑛 = 3273 for the T95 

portfolio and ecf(𝑣, 𝑟T95) = 𝑛
−1∑ exp (i 𝑣 𝑟T95,𝑗)

𝑛
𝑗=1  is the empirical characteristic function. The 

inclusion of the term (∆𝐶𝐹)2 relies on the one-to-one correspondence between the cumulative 

distribution function and the CF (since the PDF is the inverse Fourier transform of the CF). The 

integral for (∆𝐶𝐹)2 can be estimated as described by Yu (2004). 

 

 

 

Figure 12.1 T95 portfolio time series of (top) price (assuming an initial investment of $100) 

and (bottom) log-return. 

 

Table 12.1 Preset and estimated parameter values for the fit of the NDIG 

distribution to daily log-return values of the T95 portfolio 

 𝜇 𝜎 𝛾 𝜌 𝜇𝑈 𝜆𝑈 𝜇𝒯 𝜆𝒯 

global 9.0 ∙ 10−4 1.9 ∙ 10−2 0 −4.4 ∙ 10−4 1 0.192 1 9.87 

mean 1.2 ∙ 10−3 1.4 ∙ 10−2 0 −5.9 ∙ 10−4 1 0.45 1 9.77 

std 0.4 ∙ 10−3 0.5 ∙ 10−2 NA 4.4 ∙ 10−4 NA 0.13 NA 0.10 

 

As noted in Chapter 4, 3,273 daily log-returns for the T95 portfolio were computed covering 

the period from 12/19/2007 through 12/18/2020. The price and return time series for this portfolio 

are shown in Fig. 12.1. Using the vector of log-returns 𝑟 = {𝑟1, … , 𝑟3273} in (12.30) produced the 

parameter values given in the row labelled “global” in Table 12.1. To test the variation of the 

values over time, the fits (12.30) were performed using a moving window of 4 years (1,008 days). 

The resultant time series, covering the period 12/19/2011 through 12/18/2020, are shown in Fig. 

12.2, while mean and standard deviation values computed for the time series are summarized in 

Table 12.1. Comparison of the global and rolling window mean values, as well as the standard 

deviation values, indicates that 𝜆𝒯 has the smallest variation with time. The global values measured 
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for 𝜇 and  𝜎 are within one standard deviation from their respective rolling window means while 

the global value for 𝜆𝑈 is within two standard deviations from the rolling window mean. The 

parameter 𝜌 has the smallest value and a large standard deviation. Fig. 12.3 compares the first four 

empirical moments computed from the time series in Fig. 12.1 and the moments computed from 

the fitted parameters using (12.18). 

 

  

 

 

Figure 12.2 Four-year moving window fits to the parameter values 𝜇, 𝜎, 𝜌, 𝜆𝑈, 𝜆𝒯. 

 

  

  

Figure 12.3 Comparison of the first four empirical (“emp”) moments computed from the return 

time series in Fig. 12.1 and the moments (“th”) computed from the fitted parameters. 
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Figure 12.4 Fitted NDIG, normal and Student’s 𝑡-distributions compared with the empirical 

kernel density of the log-returns with (left) linear and (right) log-scale y-axis. 

 

By evaluating the CF at these parameter values, the resultant PDF can be computed via FFT. 

This PDF is compared with the empirical density of the T95 log-returns in Fig. 12.4. For 

comparison, the pdfs of the normal and the Student’s 𝑡-distribution are also fit to the empirical 

density (using the standard maximum likelihood estimator for pdfs). Except for a narrow range 

around the modal return value, the NDIG distribution provides the best fit, with the 𝑡-distribution 

a close second. The normal distribution is incompatible with the heavy tails of the return 

distribution. The 𝑡-distribution provides a reasonable tail fit over this tail range but its power-law 

tail becomes too heavy beyond this range. 

In section 12.3.2, the NDIG model is used to price a European call option 𝒞 with the underlying 

risky asset 𝒮 being the T95 portfolio. The dynamics of 𝒮 under 𝑄 is given by (12.20) and the CF 

of the log-price by (12.21). Option prices for 𝒞 are determined by evaluating (12.23) using the 

FFT for different values of strike price 𝐾 and maturity time 𝑇. Put option prices are computed 

using the put-call parity. Section 12.3.1 discusses how to set the numerical parameters 𝑎 and 𝑣max 
required for the option price computations. 

 

12.3.1 Choice of 𝒂 and 𝒗𝐦𝐚𝐱 
 

Carr and Madan (1998) introduce the parameter 𝑎 to ensure that the call pricing function (12.22) 

is square integrable as 𝐾 → 0 (i.e. as 𝑘 = ln(𝐾) → −∞). They note that a sufficient condition for 

square integrability is provided by the requirement that 

𝜑
ln(𝑆𝑇

(𝑄)
)
[−𝑖(1 + 𝑎)] < ∞ . (12.31) 

From (12.21), 

𝜑
ln(𝑆𝑇

(𝑄)
)
(−𝑖(1 + 𝑎))

= 𝑆𝑡
1+𝑎 exp{(1 + 𝑎)[𝑟𝑓 − 𝐾𝑋1(1)]𝑇} {exp (𝜓𝑋1(−𝑖(1 + 𝑎)))}

𝑇

. 
(12.32) 

From (12.13) and (12.15) note that 𝜓𝑋1(−𝑖𝑤) = 𝐾𝑋1(𝑤) for 𝑤 ∈ 𝑅. Hence (12.31) and (12.32) 

can be combined as the requirement 

 exp{(1 + 𝑎)[𝑟𝑓 − 𝐾𝑋1(1)]𝑇} {exp(𝐾𝑋1(1 + 𝑎))}
𝑇
< ∞. (12.33) 
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As the cumulant generating function should remain real-valued, requirement (12.33) reduces to 

positivity requirements for the arguments of the square root evaluations in (12.16) for 𝐾𝑋1(1 + 𝑎), 

𝑎 ∈ [0, 𝑎max). From (12.15), assuming 𝛾 = 0, this reduces to the requirements 

ℎ(𝑤) = 1 −
𝜎2

𝜆𝒯
𝑤2 − 2

𝜌

𝜆𝒯
𝑤 ≥ 0  and  𝑔(𝑤) = 1 − 2

𝜆𝒯
𝜆𝑈
(1 − √ℎ(𝑤)) ≥ 0. (12.34) 

Solving the second of these for ℎ(𝑤) gives 

ℎ(𝑤) ≥ (1 −
𝜆𝑈
2𝜆𝒯

)
2

≝ 𝑑2. (12.35) 

Combining (12.35) with the first equation in (12.34) gives 

1 −
𝜎2

𝜆𝒯
𝑤2 − 2

𝜌

𝜆𝒯
𝑤 ≥ 𝑑2. (12.36) 

From the roots of this quadratic, (12.36) is satisfied for 𝑤 = 1 + 𝑎 when 

−
𝜌

𝜎2
−
√𝜌2 + 𝜆𝒯𝜎

2(1 − 𝑑2)

𝜎2
≤ 1 + 𝑎 ≤ −

𝜌

𝜎2
+
√𝜌2 + 𝜆𝒯𝜎

2(1 − 𝑑2)

𝜎2
. (12.37) 

Since 𝑎 > 0, we must have 

𝑎 ≤ 𝑎max = −1 −
𝜌

𝜎2
+
√𝜌2 + 𝜆𝒯𝜎

2(1 − 𝑑2)

𝜎2
. (12.38) 

Rewriting (12.38) using (12.35) gives 

𝑎max =
1

𝜎2
√𝜌2 + 𝜆𝑈 (1 −

𝜆𝑈
4𝜆𝒯

 ) 𝜎2 −
𝜌

𝜎2
− 1. (12.39) 

Using the global parameter values given in Table 12.1, this produces a bound of 𝑎max ≲ 23.2. Fig. 

12.5 shows values of 𝑎max computed over the time-period 12/19/2011 through 12/18/2020 using 

the parameter values plotted in Fig. 12.2. The smallest values of ≲ 20 for 𝑎max occur during the 

end of the great recession. They are also small during the pandemic. 

 

 

Figure 12.5 Values for the upper bound  𝑎max computed over the period 12/19/2011 through 

12/18/2020. 

A stricter determination for the value of 𝑎 ∈ [0, 𝑎max) is based on the requirement that option 

prices remain within allowed bounds. For a European call option, the upper and lower bounds on 

the price are given by (See, e.g., Hull, 2018) 
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max(𝑆𝑡 − 𝐾𝑒
−𝑟𝑓𝑇, 0) ≤ 𝐶(𝑆𝑡, 𝑇, 𝐾 ) ≤ 𝑆𝑡. (12.40) 

From put−call parity, 

𝐶(𝑆𝑡, 𝑇, 𝐾) + 𝐾𝑒
−𝑟𝑓𝑇 = 𝑃(𝑆𝑡, 𝑇, 𝐾) + 𝑆𝑡 ,  

 the bounds on the price 𝑃(𝑆𝑡, 𝑇, 𝐾) of a European put option are 

max(0, 𝐾𝑒−𝑟𝑓𝑇 − 𝑆𝑡) ≤ 𝑃(𝑆𝑡, 𝑇, 𝐾) ≤ 𝐾𝑒−𝑟𝑓𝑇. (12.41) 

 

  
(a) (b) 

 
 

(c) (d) 

Figure 12.6 The maximum, minimum, and price surfaces computed for (a) call and (b) put 

options from (12.40) and (12.41). (c) The maximum − price and price − minimum difference 

surfaces computed from (12.42). (d) The minimum difference time series ms(𝑡) and sm(𝑡) 
computed from (12.43) over the period 12/19/2011 through 12/18/2020. 

 

Fig. 12.6 shows call and put price surfaces, as well as the maximum and minimum threshold 

surfaces, computed for a value of 𝑎 = 0.2 using the value of the T95 portfolio on 12/18/2020 and 

the NDIG parameters from Table 12.1. While these are three-dimensional plots of the surfaces as 

a function of 𝐾 and 𝑇, they have been projected into the price−𝐾 plane to show most clearly 
how the price surfaces approach the minimum and maximum surfaces. In this projection, it 
is clear that the price surfaces exceed the maximum threshold for low values of K. As the put 
option prices in this numerical example are computed using put−call parity, it is 
unnecessary to examine put and call prices separately; the difference surfaces 

𝑆𝑡 − 𝐶(𝑆𝑡, 𝑇, 𝐾)  and  𝐶(𝑆𝑡, 𝑇, 𝐾) − max(𝑆𝑡 − 𝐾𝑒
−𝑟𝑓𝑇, 0), (12.42) 
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are respectively identical to the difference surfaces 

𝐾𝑒−𝑟𝑓𝑇 − 𝑃(𝑆𝑡, 𝑇, 𝐾)  and  𝑃(𝑆𝑡, 𝑇, 𝐾) − max(0, 𝐾𝑒
−𝑟𝑓𝑇 − 𝑆𝑡).  

Fig. 12.6(c) summarizes the results of Figs. 12.6(a) and (b) by showing the difference surfaces 

from (12.42). The “maximum – price” surface, 𝑆𝑡 − 𝐶(𝑆𝑡, 𝑇, 𝐾), has negative values for the lowest 

strike price values. Fig 12.6(d) plots the values 

ms(𝑡) = min[𝑆𝑡 − 𝐶(𝑆𝑡, 𝑇, 𝐾)], 

  sm(𝑡) = min[𝐶(𝑆𝑡, 𝑇, 𝐾) − max(𝑆𝑡 − 𝐾𝑒
−𝑟𝑓𝑇 , 0)], 

(12.43) 

obtained from the same computations that produced the results shown in Fig. 12.5. Using the value 

𝑎 = 0.2 results in price surfaces that exceed maximum price threshold every day over this period. 

Further computations show that choosing 𝑎 too small results in option prices that exceed the 

maximum threshold, while choosing 𝑎 too large produces prices that go below the minimum 

threshold (and may be negative).  It can also be deduced from Fig. 12.6(d) that the range of 

threshold-obeying 𝑎 values changes with the price of the underlying. For the computations in this 

section, which use, as the underlying asset, the T95 portfolio having prices given by Fig. 12.1, 

computations of option prices for the period 12/19/2011 through 12/18/2020 reveal that it is 

sufficient to uniformly bound 𝑎 in the range 

  𝑎 ∈ [0.40,0.90] (12.44) 

to ensure that threshold prices are never exceeded. For the computations in the remainder of this 

section, we utilize the smallest possible value, 𝑎 = 0.40. 

To address the question of the error produced by truncating the integration in (12.23) to the 

range 𝑣 ∈ [0, 𝑣max], again two considerations come into play. From (12.28), we see that by using 

an FFT to perform the integration in (12.23), the value of 𝑣max determines the range of strike prices 

𝐾 = 𝑒𝑘 examined. In practice, the range of strike prices must cover at least the range (0, 2𝑆𝑡), 
where 𝑆𝑡 is the price of the underlying on the date 𝑡 for which option prices are to be computed. 

Under the requirement �̅� ≥ ln(2𝑆𝑡), from (12.28) this necessitates 

 𝑣max(𝑡)  ≤
(𝑁 − 1)2

𝑁

 𝜋

ln(2𝑆𝑡)
 ≝ �̅�(𝑡). (12.45) 

As the FFT requires an equally spaced 𝑘-grid, the spacing between strike prices 𝐾 grows 

exponentially, reducing coverage for large values of 𝐾. Choice of 𝑣max(𝑡) involves a compromise 

between the upper bound (12.45) and a sufficiently large value needed to control the truncation 

error produced by approximating (12.23) by (12.25). From (12.23), this truncation error is 

𝜀(𝑆𝑡, 𝑇, 𝑘) =
𝑒−𝑟𝑓𝑇−𝑎𝑘

𝜋
∫ 𝑒−𝑖𝑣𝑘

𝜑
ln(𝑆𝑇

(𝑄)
)
[−𝑖(1 + 𝑎 + 𝑖𝑣)]

(𝑎 + 𝑖𝑣)(1 + 𝑎 + 𝑖𝑣)

∞

𝑣max(𝑡)

𝑑𝑣 

≡
𝑒−𝑟𝑓𝑇−𝑎𝑘

𝜋
∫ 𝑔(𝑣)
∞

𝑣max(𝑡)

𝑑𝑣 , 

 

which can be bounded by 

𝜀(𝑆𝑡, 𝑇, 𝑘)  ≤
𝑒−𝑟𝑓𝑇−𝑎𝑘

𝜋
∫ |𝑔(𝑣)|
∞

𝑣max(𝑡)

𝑑𝑣 , (12.46) 
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where 

|𝑔(𝑣)| =

|𝜑
ln(𝑆𝑇

(𝑄)
)
[−𝑖(�̅� + 𝑖𝑣)]|

√(𝑎2 + 𝑣2)(�̅�2 + 𝑣2)
 , �̅� ≡ 1 + 𝑎. (12.47) 

From (12.21) 

𝜑
ln(𝑆𝑇

(𝑄)
)
(−𝑖𝑤) = 𝑆𝑡

𝑤exp (𝑤𝑇 �̅� + 𝑇𝐾𝑋1(𝑤)) , (12.48) 

with 𝑤 ≡ �̅� + 𝑖𝑣 and �̅� ≡ 𝑟𝑓 − 𝐾𝑋1(1) ∈ 𝑅. Starting from (12.48) and (12.16), a few pages of 

computation (assuming 𝛾 = 0) lead to the result 

|𝜑
ln(𝑆𝑇

(𝑄)
)
(−𝑖𝑤)| = (𝑆𝑡)

�̅�exp{𝑇[�̅� (�̅� + 𝜇) + 𝜆𝑈 − ℎ(𝑣)]} , 

ℎ(𝑣) = 𝜆𝑈(𝑐1
2(𝑣) + 𝑐2

2(𝑣))1 4⁄ cos (
𝜃𝑐(𝑣)

2
). 

(12.49) 

The terms appearing in ℎ(𝑣) are defined in Appendix B of this chapter. Noting that 

exp[−𝑇ℎ(𝑣)] < 1, we have the bound 

|𝜑
ln(𝑆𝑇

(𝑄)
)
(−𝑖𝑤)| < (𝑆𝑡)

�̅�exp{𝑇[�̅� (�̅� + 𝜇) + 𝜆𝑈]}  ≡ 𝐴 ,  

and, for sufficiently large values of 𝑣max(𝑡), |𝑔(𝑣)| < 𝐴 𝑣2⁄ . Thus, the truncation error is bounded 

by107 

𝜀(𝑆𝑡, 𝑇, 𝑘)  ≤
𝑒−𝑟𝑓𝑇−𝑎𝑘

𝜋 
 

𝐴

𝑣max(𝑡)
 . (12.50) 

Imposing ℎ(𝑣) < 1 is a rather crude bound. With 𝑣max(𝑡) sufficiently large and using the large 

𝑣  approximation derived in equation (12.B) of Appendix B, we have ℎ(𝑣) ≈ 𝜆𝑈√𝑐1 giving 

exp{−𝑇𝜆𝑈√𝑐1} < exp{−√2𝑇𝜆𝒯
1 4⁄ 𝜆𝑈

1 2⁄ 𝜎1 2⁄ [𝑣max(𝑡)]
1 2⁄ }, (12.51) 

for 𝑣 > 𝑣max(𝑡). Under this improved bound (12.46) becomes 

𝜀(𝑆𝑡, 𝑇, 𝑘)  

≤
𝑒−𝑟𝑓𝑇−𝑎𝑘

𝜋 
 
(𝑆𝑡)

�̅� exp{𝑇[�̅� (�̅� + 𝜇) + 𝜆𝑈 − √2𝜆𝒯
1 4⁄ 𝜆𝑈

1 2⁄ 𝜎1 2⁄ [𝑣max(𝑡)]
1 2⁄ ]}

𝑣max(𝑡)
 . 

(12.52) 

For sufficiently large values of 𝑣max(𝑡), the term exp{−𝑇√2𝜆𝒯
1 4⁄ 𝜆𝑈

1 2⁄ 𝜎1 2⁄ [𝑣max(𝑡)]
1 2⁄ } 

dominates the numerator of (12.52) and the truncation error decreases exponentially with maturity 

time 𝑇. 

From (12.45), the truncation error is maximally reduced by setting 𝑣max(𝑡) = �̅�(𝑡). As 𝑣max(𝑡) 
varies with day 𝑡 (that is, with 𝑆𝑡), from (12.28) we note that �̅� (which sets the range of strike 

prices) varies with 𝑡. For simplicity, the computations for this empirical example are based upon 

the use of the constant value  �̅� = min𝑡[𝑣max(𝑡)]. Based on the range of underlying asset prices 

over this period (Fig. 12.1),  �̅� = 465.65. The value �̅� = 465 was used in the computations. Fig. 

 
107 This result using the bound ℎ(𝑣) < 1 is presented in Carr and Madan (1998). 
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12.7 shows the daily bound on the truncation error 𝜀(𝑆𝑡, 1, 𝑘) for the smallest maturity time, 𝑇 =
1 day. The bound for 𝑇 > 1  can be reasonably approximated by 𝜀(𝑆𝑡, 1, 𝑘)

𝑇. During asset price 

down-turns, the truncation error increases. The daily truncation bound can be improved by using 

a time-varying  𝑣max(𝑡) rather than the constant value �̅� used in these calculations. 

 

 

Figure 12.7 Maximum truncation error 𝜀(𝑆𝑡, 1, 𝑘) in the call option price computation. 

 

12.3.2 Option Price and Implied Volatility Surfaces 

 

Fig. 12.8 shows example call and put price surfaces, 𝐶(𝑆𝑡, 𝑇, 𝐾) and 𝑃(𝑆𝑡, 𝑇, 𝐾), computed on 

12/18/2020 (𝑆𝑡 = $443.95) using the parameter values from Table 12.1. Note that for close-to-

the-money values (𝐾 ≈ 𝑆𝑡), the call and put option prices increase with 𝑇 reflecting increased 

future uncertainty. Fig. 12.8 also plots the implied volatility surface computed from (12.8) as a 

function of 𝑇 and moneyness, 𝑀 = 𝐾/𝑆0. Since put option prices were computed from call option 

prices using put−call parity, the implied volatility surface is the same for both call and put options. 

As is typically observed, at constant values of 𝑇 the implied volatility (future uncertainty) increases 

as strike prices move away from the value 𝑆𝑡 (the volatility “smile”). At constant values of 𝑀, 

implied volatility decreases as time to maturity increases. 

 

   
h(a) (b) (c) 

Figure 12.8 (a) Call and (b) put prices for European options with the T95 portfolio as the 

underlying risky asset. (c) The implied volatility surface is the same for both call and put options. 

 

 

 

12.4 Volatility Measures 

 

As illustrated in Fig. 12.1, REIT portfolio returns (and indeed the entire market) undergo periods 

of significant volatility. As a result, quantifying volatility and providing estimates of future 
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volatility are critical in portfolio management and financial markets. As option pricing provides 

(practical) estimates of the current value of future prices, determining volatility based upon option 

prices provides one method for estimating future volatility. Indeed, this is the impetus behind 

implied volatility computations using the Black−Scholes−Merton model. This section develops a 

volatility measure based upon NDIG option pricing and compares it to two existing volatility 

measures: historical volatility and one based upon the Chicago Board Options Exchange (Cboe) 

VIX formulation. The three measures will be compared based upon their performance on historical 

data. The historical volatility measure will be used as a proxy for the true volatility, to which results 

from the other two measures will be compared. 

 

Historical volatility. A time series of historical volatility is defined as the standard deviation of 

log-returns computed in a moving window of fixed time-length. Fig. 12.9 shows the historical 

volatility (in percent) using the log-return data of Fig. 12.1 for the T95 portfolio and a moving 

window of 4 years. Historical daily volatility over this period varied from a low of 1.0% (Q3−Q4, 

2015) to a high of 2.9% (Q4, 2012). 

 

  

Figure 12.9 Comparison of (left) unnormalized (in percent) and (right) normalized volatility 

measures for the log-returns for the T95 portfolio over the period 12/19/2011 through 

12/18/2020. Note the log-scale y-axis in the left figure. The STD and NDIG plots are 

indistinguishable. 

 

Implied volatility measured under 𝑸. By their very nature, option prices attempt to capture 

future uncertainty. Deducing an implied volatility from option prices provides a proxy measure for 

future volatility. The VIX was the first practical index developed to reflect volatility expectations 

for the S&P 500 stock index (SPX). The value of the VIX index is 

VIX = 100 √𝑊1𝜎1
2 +𝑊2𝜎2

2 . (12.53) 

Subscript “1” denotes near-term options while “2” denotes next-term options. As SPX options 

expire on Fridays, depending on the trading day, near-term options have 23 to 30 days until 

expiration, while next-term options have 31 to 37 days until expiration. The weights  𝑊𝑗 , 𝑗 = 1, 2  

express these expiration times in a normalized form, accurate to the minute, 

𝑊1 =
𝑀𝑇1

𝑀30
(
𝑀𝑇2 −𝑀30

𝑀𝑇2 −𝑀 𝑇1

) , 𝑊2 =
𝑀𝑇2

𝑀30
(
𝑀30 −𝑀𝑇1

𝑀𝑇2 −𝑀 𝑇1

) . (12.54) 
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Here 𝑀𝑇𝑗
 is the number of minutes to settlement of term 𝑗 options while 𝑀30 denotes the number 

of minutes in 30 days. Hence 0 ≤ 𝑊1 ≤ 1, 0 ≤ 𝑊2 ≤ 1, and 𝑊1 +𝑊2 = 1. The values of the 

near- and next-term volatilities are given by (Demeterfi et al., 1999) 

𝜎𝑗
2 = 

2𝑒𝑟𝑓𝑇𝑗

 𝑇𝑗
∑

∆𝐾𝑖

𝐾𝑖
2 𝑄(𝐾𝑖) −

1

𝑇𝑗
(
𝐹𝑗

𝐾0𝑗
− 1)

2

𝑖

, (12.55) 

where:  𝑇𝑗 = 𝑀𝑇1 𝑀365⁄  is the time to expiration measured in fractions of a year; 𝑟𝑓 is the 

annualized risk-free rate; 𝐹𝑗 is the forward index level derived from index option prices; 𝐾0𝑗 is the 

first strike price below 𝐹𝑗; 𝐾𝑖 is the strike price of the 𝑖th out-of-the-money option (a call if 𝐾𝑖 >

𝐾0, a put if 𝐾𝑖 < 𝐾0, both call and put if 𝐾𝑖 = 𝐾0); ∆𝐾𝑖 = (𝐾𝑖+1 − 𝐾𝑖−1) 2⁄  is the interval between 

strike prices; and 𝑄(𝐾𝑖) is the midpoint of the bid−ask spread for each option with strike price 𝐾𝑖. 
Details on the computation of each of these parameters can be found in the Cboe white paper (Cboe 

Exchange, Inc., 2019). 

This methodology can be applied to calculate a “VIX-like” volatility, which we refer to as 

REVIX, for the T95 portfolio using the NDIG model to compute prices for European put and call 

options having between 23 and 37 days to expiration. To compare with the historical volatility, 

REVIX values were calculated using historical data as follows. For each moving window of length 

4 years: 

1. Fit the NDIG model to the T95 log-return data and estimate the model parameters using the 

minimization (12.30). This results in the parameter values displayed in Fig. 12.2. 

2. Determine the dynamics of the T95 price 𝑆𝑡
𝑄

 in the risk-neutral world and, subsequently, the 

CF of the log price ln𝑆𝑡
𝑄

 using (12.21). 

3. Using the portfolio spot price 𝑆𝑡 for the last date of the moving window, call option prices with 

appropriate expiration dates are computed using the FFT formulation (12.25) to (12.28). Put 

option prices are computed using put−call parity. 

4. REVIX values are then computed using (12.53) through (21.58). As there are no traded options 

on our T95 portfolio, the following minor modifications were made to the VIX formulation. 

a. The risk-free interest rate used was the annualized bond-equivalent (coupon-equivalent) 

yield for 4-week U.S. treasury bills108 published for day 𝑡. 

b. Closing times for option evaluation are 4:00 PM on day 𝑡. 

c. Options expire on near- and next-term Fridays at 4:00 PM. 

d. As there is no bid−ask spread in the NDIG option price computations, 𝑄(𝐾𝑖) is computed 

directly as the NDIG option price. 

e. As NDIG computed option prices do not go to zero, the range of strike prices considered 

in the REVIX computation was 0.75 𝑆𝑡  < 𝐾 < 1.5 𝑆𝑡. 

As noted in point 4d, as our underlying asset portfolio is not traded, no market sentiment is setting 

bid−ask prices for these call and put options, and the REVIX volatility directly reflects the NDIG 

option price computations. There is therefore no risk premium (market price of risk) that is 

traditionally captured by the VIX. 

Fig. 12.9 (left) shows the results of the REVIX volatility computation. At first sight, the larger 

REVIX volatilities appear inconsistent with the historical volatilities; REVIX values vary from a 

 
108 https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=billrates 
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minimum of 30.6% (Q3−Q4, 2015) to a maximum of 52.7% (Q1, 2012), and are 19 to 30 times 

larger than the historical volatility. This inconsistency is ultimately related to the fact that the VIX 

formulation is defined for use with SPX. The scale of the VIX value is set by the scale of the 

variances 𝜎1
2 and 𝜎2

2 in (12.53), which are defined in (12.55). We note without further comment 

that, in practice, the first of the two terms in (12.55) dominates. This first term approximates the 

integral 

𝜎2 = 
2𝑒𝑟𝑓𝑇

 𝑇
∫

𝑄(𝐾)

𝐾2

𝐾𝐻

𝐾𝐿

𝑑𝐾 (12.56) 

for the appropriate near- or next-term options. The qualitative form of 𝑄(𝐾) can be approximated 

by the piecewise linear function 

𝑄(𝐾) =  

{
 

 ∆𝑄
𝐾 − 𝐾𝐿
𝐾0 − 𝐾𝐿

+ 𝑄𝐿 , 𝐾𝐿 < 𝐾 ≤ 𝐾0 ,

∆𝑄
𝐾𝐻 − 𝐾

𝐾𝐻 − 𝐾0
+ 𝑄𝐿 , 𝐾0 ≤ 𝐾 < 𝐾𝐻 ,

 (12.57) 

where ∆𝑄 = 𝑄𝐻 − 𝑄𝐿 characterizes the range of out-of-the-money call and put prices. Using 

(12.57), the evaluation of integral in (12.56) can be written 

∫
𝑄(𝐾)

𝐾2

𝐾𝐻

𝐾𝐿

𝑑𝐾 =
𝑄𝐻
𝐾𝐿
{(1 − 𝑏) [

ln(𝑥)

𝑥 − 1
+
𝑐 ln(𝑐𝑥)

1 − 𝑐𝑥
] + 𝑏(1 − 𝑐)} ≡

𝑄𝐻
𝐾𝐿
𝑔(𝑐, 𝑥; 𝑏), 

𝑏 ≡
𝑄𝐿
𝑄𝐻

, 0 < 𝑏 < 1; 𝑐 ≡
𝐾𝐿
𝐾𝐻

, 0 < 𝑐 < 1; 𝑥 ≡
𝐾0
𝐾𝐿
, 1 < 𝑥 <

1

𝑐
. 

(12.58) 

The surface 𝑔(𝑐, 𝑥; 𝑏) parameterized by 𝑏 is a convex surface with the limits 0 < 𝑔(𝑐, 𝑥; 𝑏) < 1 

for all 𝑏 ∈ (0,1). Three examples of this surface are shown in Fig. 12.10 spanning the range of 𝑏.  

 

 
(a)                                             (b)                                              (c) 

Figure 12.10 The surface 𝑔(𝑐, �̅�; 𝑏) for (a) 𝑏 = 0.01, (b) 𝑏 = 0.46 and (c) 𝑏 = 0.97. 

 

Thus, the scale of the integral (12.58) is set by the ratio 𝑄𝐻 𝐾𝐿⁄ , and hence the range of the variance 

(12.56) is 

0 < 𝜎2 < 
2𝑒𝑟𝑓𝑇

 𝑇

𝑄𝐻
𝐾𝐿

= 2𝑒𝑟𝑓𝑇
𝑀365

 𝑀𝑇

𝑄𝐻
𝐾𝐿

≈ 24
𝑄𝐻
𝐾𝐿
. (12.59) 

There is no guarantee that the upper bound in (12.59) is less than unity! As noted in point 4e above, 

evaluation of the integral (12.58) was restricted to the range 𝐾𝐿 = 0.75 𝑆𝑡, 𝐾𝐻 = 1.5 𝑆𝑡. The 
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resultant surface 𝑄1(𝐾, 𝑡) computed from the near-term options is shown in Fig. 12.11. (The 

surface for the next-term options is very similar, with slightly larger values for 𝑄2(𝐾, 𝑡).) The 

accuracy of the approximation (12.57) can be judged by viewing this surface along constant values 

of 𝑡. 
 

 

Figure 12.11 The surface 𝑄1(𝐾, 𝑡) computed from the near-term options over the period 

12/19/2011 through 12/18/2020. The surface is truncated to lie within the range 𝐾 ∈
[0.75 𝑆𝑡, 1.5 𝑆𝑡]. 

 

To adjust for the different scales, the historical and REVIX volatility time series can be 

separately normalized (by subtracting the series mean and dividing by the series standard 

deviation). These normalized plots, also shown in Fig. 12.9, exhibit close agreement, with the 

REVIX volatility exhibiting a small daily fluctuation that is absent in the historical volatility.109 

The results of Fig. 12.9 underscore the fact that the only source of variance in this numerical 

example is that of the daily returns of the underlying risky asset, the T95 portfolio. This variance 

is directly quantified by the historical volatility. As all option prices in this example are computed 

using the Carr−Madan formulation and the NDIG model, no additional volatility is added to these 

option prices through, for example, option trader sentiment (bid−ask pricing). Thus, the REVIX 

volatility formulation encapsulates only the original asset return volatility. 

 

NDIG volatility under 𝑷. The double subordinated method leads naturally to a new measure of 

volatility under the measure 𝑃. From (12.18) with 𝛾 = 0, the variance of the unit increment 

Var[𝑋1] is 

Var(𝑋1) = 𝜎2 + 𝜌2 (
1

𝜆𝒯
+
1

𝜆𝑈
). (12.60) 

The volatility √Var[𝑋1], which we refer to as the NDIG volatility, reflects the Brownian motion 

(Gaussian) and Lévy subordinator components of the model. The NDIG volatility is also shown in 

 
109 Fig. 12.9 provides evidence that the VIX methodology, used carefully, does reproduce historical (in-sample) 

volatility. In practice and as intended, with actively traded options the VIX computation will also capture additional 

volatility induced by option trader sentiment. 
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Fig. 12.9. The unnormalized (and hence the normalized) NDIG volatility tracks the historical 

volatility veery accurately. 

 

Appendix A 

 

Although (12.13) implies that the model (12.10) has eight parameters, 𝜇, 𝛾, 𝜌, 𝜎, 𝜇𝑈, 𝜆𝑈, 𝜇𝑇 , 𝜆𝑇,  only 

six are identifiable. Using the relationship (12.15) between the CF and the MGF, from (12.13) 

𝐾𝑋1(𝑤) can be written as 

𝐾𝑋1(𝑤) = 𝜇𝑤 + 𝑐𝐾 (1 −√𝑔(𝑤)), 

𝑔(𝑤) = 1 − 2𝑐𝑔 (1 − √ℎ(𝑤)) − 2𝑑𝛾𝑤, 

ℎ(𝑤) = 1 − 2𝑑𝜌𝑤 − 𝑑𝜎𝑤
2, 

(12.A1) 

where 𝑐𝐾 = 𝜆𝑈 𝜇𝑈⁄ ,  𝑐𝑔 = 𝜇𝑈
2 𝜆𝒯 (𝜆𝑈𝜇𝒯)⁄ ,    𝑑𝛾 = 𝛾 𝜇𝑈

2 𝜆𝑈⁄ , 𝑑𝜌 = 𝜌 𝜇𝒯
2 𝜆𝒯⁄ , and 𝑑𝜎 = 𝜎

2 𝜇𝒯
2 𝜆𝒯⁄ . 

From (12.A1) we have the following derivatives with respect to 𝑤: 

ℎ′(𝑤) = −2𝑑𝜌 − 2𝑑𝜎𝑤, 

ℎ′′(𝑤) = −2𝑑𝜎, 

ℎ(𝑝)(𝑤) = 0, 𝑝 = 3, 4,… ; 

(12.A2) 

 

𝑔′(𝑤) = 𝑐𝑔[ℎ
−1 2⁄ ℎ′] − 2𝑑𝛾  , 

𝑔′′(𝑤) = 𝑐𝑔 [−
1

2
ℎ−3 2⁄ (ℎ′)2 + ℎ−1 2⁄ ℎ′′] , 

𝑔′′′(𝑤) = 𝑐𝑔 [
3

4
ℎ−5 2⁄ (ℎ′)3 −

3

2
ℎ−3 2⁄ ℎ′ℎ′′ + ℎ−1 2⁄ ℎ′′′] , 

𝑔(4)(𝑤) = 𝑐𝑔 [−
15

8
ℎ−7 2⁄ (ℎ′)4 +

9

2
ℎ−5 2⁄ (ℎ′)2ℎ′′ −

1

2
ℎ−3 2⁄ [3(ℎ′′)2 + 4ℎ′ℎ′′′]

+ ℎ−1 2⁄ ℎ(4)] ; 

(12.A3) 

and 

𝐾𝑋1
′(𝑤) = 𝜇 −

𝑐𝐾
2
[𝑔−1 2⁄ 𝑔′] , 

𝐾𝑋1
′′(𝑤) = −

𝑐𝐾
2
[−
1

2
𝑔−3 2⁄ (𝑔′)2 + 𝑔−1 2⁄ 𝑔′′] , 

𝐾𝑋1
′′′(𝑤) = −

𝑐𝐾
2
[
3

4
𝑔−5 2⁄ (𝑔′)3 −

3

2
𝑔−3 2⁄ 𝑔′𝑔′′ + 𝑔−1 2⁄ 𝑔′′′] , 

𝐾𝑋1
(4)(𝑤) = −

𝑐𝐾
2
[−
15

8
𝑔−7 2⁄ (𝑔′)4 +

9

2
𝑔−5 2⁄ (𝑔′)2𝑔′′

−
1

2
𝑔−3 2⁄ [3(𝑔′′)2 + 4𝑔′𝑔′′′] + 𝑔−1 2⁄ 𝑔(4)] . 

(12.A4) 

Noting that ℎ(0) = 𝑔(0) = 1, the dependence of the derivatives in (12.A2) through (12.A4), when 

evaluated at 𝑤 = 0, can be summarized as follows: 

ℎ′(0) = ℎ′(𝑑𝜌), 

ℎ′′(0) = ℎ′′(𝑑𝜎), 

ℎ(𝑝)(𝑤) = 0, 𝑝 = 3, 4,… ; 

(12.A5) 
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𝑔′(0) = 𝑔′(𝑐𝑔, ℎ
′(0), 𝑑𝛾) =  𝑔

′(𝑐𝑔, 𝑑𝜌, 𝑑𝛾) ,  

𝑔(𝑝)(0) = 𝑔(𝑝) (𝑐𝑔, ℎ
′(0), ℎ′′(0)) = 𝑔(𝑝)(𝑐𝑔, 𝑑𝜌, 𝑑𝜎) , 𝑝 = 2, 3, … ; 

(12.A6) 

and 

𝐾𝑋1
′(0) = 𝐾𝑋1

′
(𝜇, 𝑐𝐾 , 𝑔

′(0)) =  𝐾𝑋1
′
(𝜇, 𝑐𝐾 , 𝑐𝑔, 𝑑𝜌, 𝑑𝛾), 

𝐾𝑋1
(𝑝)(0) = 𝐾𝑋1

(𝑝)
(𝑐𝐾 , 𝑔

′(0), 𝑔′′(0),… , 𝑔(𝑝)(0)) = 𝐾𝑋1
(𝑝)
(𝑐𝐾 , 𝑐𝑔, 𝑑𝜌, 𝑑𝛾 , 𝑑𝜎) , 

 𝑝 = 2, 3,… . 

(12.A7) 

Thus, all derivatives of 𝐾𝑋1(𝑤)|𝑤=0, or equivalently all moments of the process 𝑋1, depend only on 

the six identifiable parameters 𝜇, 𝑐𝐾 ,   𝑐𝑔, 𝑑𝜌, 𝑑𝛾 , 𝑑𝜎. 

 

Appendix B 

 

Using the definitions, 

�̅� = 1 + 𝑎, 𝑑𝜆 =
𝜆𝒯
𝜆𝑈
, 𝑑𝜌 =

𝜚

𝜆𝒯
, 𝑑𝜎 =

𝜎2

𝜆𝒯
,  

the terms in (12.49) are 

𝑐1 = 1 − 2𝑑𝜆 + 2𝑑𝜆(𝑏1
2 + 𝑏2

2)1 4⁄ cos (
𝜃𝑏
2
) , 𝑐2 = 2𝑑𝜆(𝑏1

2 + 𝑏2
2)1 4⁄ sin (

𝜃𝑏
2
), 

𝜃𝑐 = atan (
𝑐2
𝑐1
) ∈ (−

𝜋

2
,
𝜋

2
], 

 

 

where 

𝑏1 = 1 − 2𝑑𝜌�̅� − 𝑑𝜎(�̅�
2 − 𝑣2), 𝑏2 = −2(𝑑𝜌 + �̅�𝑑𝜎)𝑣,

𝜃𝑏 = atan (
𝑏2
𝑏1
) ∈ (−

𝜋

2
,
𝜋

2
]. 

 

For sufficiently large values of 𝑣, we have the approximations: 

𝑏1 ≈ 𝑑𝜎𝑣
2, 𝑏2 = −2(𝑑𝜌 + �̅�𝑑𝜎)𝑣, (𝑏1

2 + 𝑏2
2)1 4⁄ ≈ 𝑑𝜎

1 2⁄ 𝑣, 

cos (
𝜃𝑏
2
) ≈ 1,   sin (

𝜃𝑏
2
) ≈ −

𝑑𝜌 + �̅�𝑑𝜎

𝑑𝜎𝑣
 , 

𝑐1 ≈ 2𝑑𝜆√𝑑𝜎𝑣, 𝑐2 ≈ −2𝑑𝜆
𝑑𝜌 + �̅�𝑑𝜎

√𝑑𝜎
, (𝑐1

2 + 𝑐2
2)1 4⁄ ≈ √𝑐1, 

cos (
𝜃𝑐
2
) ≈ 1 . 

(12.B) 
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Chapter 13 
Inclusion of ESG Ratings in Optimization 

 

Abstract 

 

A Bill Is Coming Due for Greener Offices (The Wall Street Journal, 5/6/2021110) “Energy-

inefficient buildings will need to be upgraded if countries are to meet net-zero commitments. Signs 

that landlords can claw back the cost are mixed.” 

Investors’ planned holding periods (terms of ownership) are likely to be a factor in this issue. 

For U.S. institutional investors, the decision to pay efficiency premiums is less clear than for 

European investors who typically invest for longer terms. More rigorous analytics are needed to 

reduce or eliminate collinearity of new building premiums and that for energy efficiency. (S.T.C. 

5/23/2021) 

There is substantial developer/investor uncertainty relative to the cost benefit analysis of 

energy efficient features for all forms of real estate. Due to the competitive nature of the real estate 

market after the reopening of the economy, it is highly speculative and unknown if there will be 

sufficient rental premiums to justify the substantial initial investment related to all energy efficient 

features. The tax credit advantage to developers appear to be the main compelling driver of this 

type of investment at this moment in time. (J.H.J. 5/23/2021) 

 

ESG Data Is All Over the Place. How to Fix It, From Two Who Work with the Numbers 

(Barron’s, 9/21/2021111) “Sustainable investing keeps getting more attention—and investors and 

corporations more frustrated. There’s more than $35 trillion invested in a manner that takes into 

account environmental, social, and governance concerns, known as ESG, according to the Global 

Sustainable Investment Alliance. ... How these money managers use ESG data, such as greenhouse 

gas emissions or workplace safety, is a scattershot process, however. There is no single framework 

for reporting data; there is no one agency that collects or audits it; there is no requirement as to 

how companies are to collect and report ESG data if at all.” 

 

The ESG Reporting Endgame: Lessons from Human Capital Reporting (Forbes, 

9/21/2021112) “As CFOs prepare new disclosures related to environmental, social and governance (ESG) 

issues—either voluntarily or due to evolving regulatory requirements—their experiences complying with 

the U.S. Securities and Exchange Commission’s (SEC) new human capital disclosure requirements can 

help.” 

 

The Morningstar Sustainable Investing Framework: Clear terminology leads to greater 

understanding of an evolving area (Morningstar, 9/21/2021113) “To many investors, however, the 

world of sustainable investing can be a confusing mix of terms and approaches. That’s mainly 

 
110 https://www.wsj.com/articles/a-bill-is-coming-due-for-greener-offices-11620385382?st= p21c2o1nd3i3o56& 

reflink=article_gmail_share 
111 https://www.barrons.com/articles/esg-data-how-to-fix-51632173139 
112 https://www.forbes.com/sites/jimdeloach/2021/09/21/the-esg-reporting-endgame-lessons-from-human-capital- 

reporting/ 
113 https://www.morningstar.com/articles/1058990/the-morningstar-sustainable-investing-framework 

https://www.wsj.com/articles/a-bill-is-coming-due-for-greener-offices-11620385382?st=%20p21c2o1nd3i3o56&%20reflink=article_gmail_share
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because of a lack of consensus over terminology and, perhaps more significantly, because 

sustainable investing does not represent a single, distinct investment approach.” 

 
Mortgage market is unprepared for climate risk, says industry report (CNBC, 9/23/2021114) “With 

numerous stakeholders in housing finance, climate change will send significant stress down a long 

financial line, according to a Mortgage Bankers Association report. The report said it could increase 

mortgage default, increase the volatility of house prices and produce significant climate migration.” 
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JantzAnalyt ics

Tail Risk Analytics
Short Overview



The Jantz Analytics Platform

An investment platform featuring

1. risk-return sophisticated portfolios, including

• optimization based upon post-modern portfolio theory

• dynamic (look ahead) portfolio optimization

• factor analysis-based optimization

• Black-Litterman implementation of market and management views

• the ability to maximize overall ESG rating along with traditional return

• daily backtesting

2. a suite of risk analytics/tools

• performance ratios

• incremental and component value-at-risk

• statistical factor analysis

• performance attribute constraints

• early warning systems

3. derivative pricing based upon arbitrage-free, dynamic asset pricing theory, 

including

• improved asset pricing

• ESG derivative pricing

• future volatility forecasting based on

– VIX-like implied volatility

– “intrinsic time” volatility
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To do

• Test momentum intraday strategies on crypto assets 

and Russell 3000

• Reformulate optimal momentum intraday strategy as a 

mixed integer programming problem for Dow 30, 

REITs, cryptos, and Russell 3000

• Implement dynamic factor models for monthly returns 

for Dow 30, REITs, cryptos, and Russell 3000

• Complete option pricing based on REIT daily returns

• Complete ESG optimization and ESG option pricing for 

daily returns for Dow 30, REITs, cryptos, and Russell 

3000



JantzAnalyt ics

Trend-Persistence Trading Strategies
Short Overview



• Develop a Trend-Persistence (TP) strategy for Intraday Trading
on REITs.

• Trend-Persistence: An upward or downward trend in the price
movement of a given security in some time interval.

• Trend-Persistence StrategyStay Short on Expected Flops
(ExpF) (downward trend) and Stay Long on Expected Tops
(ExpT) (upward trend)

Are there persistent trends in Intraday REITs?

TASK 1



Model

Type

Total

Return

Annualized

Return
CVaRl CVaRu

Max

Drawdown

EWBH (Benchmark) 19.72% 76.50% -0.136% 0.129% 0.0714

1. Sharpe Ratio MS

SR 5-30 100 17.57% 66.59% -0.209% 0.225% 0.2141

2.OPMTS

SN-gh-0.75-0.05-200-1-100 20.23% 78.80% -0.129% 0.133% 0.071

SN-gh-0.95-0.05-200-1-100 22.02% 87.32% -0.119% 0.126% 0.048

SN-gh-0.00-0.05-200-1-200 44.56% 219.78% -0.210% 0.223% 0.076

SN-gh-0.25-0.05-200-1-500 129.64% 1276.82% -0.438% 0.466% 0.207

3. Mixed Strategy - long

SN-gh-0.75-0.05-200-1-100 23.02% 92.21% -0.110% 0.110% 0.085

SN-gh-0.85-0.05-200-1-100 23.03% 92.29% -0.110% 0.110% 0.085

4. Mixed Strategy - long/short

SN-gh-0.00-0.05-200-1-200 24.28% 98.33% -0.126% 0.120% 0.066

SN-gh-0.25-0.05-200-1-200 22.23% 88.20% -0.129% 0.122% 0.067

SN-gh-0.00-0.05-200-1-500 27.17% 113.24% -0.125% 0.121% 0.057

SN-gh-0.25-0.05-200-1-500 32.78% 144.34% -0.123% 0.120% 0.055

SN-gh-0.75-0.05-200-1-1000 35.68% 161.53% -0.140% 0.140% 0.058

SN-gh-0.95-0.05-200-1-1000 35.66% 161.37% -0.140% 0.141% 0.060

SUMMARY RESULTS



MODEL TYPE SR Sortino STARR Rachev Gini

EWBH (Benchmark) 0.996% 1.355% 0.438% 94.572% 2.150%

1. Sharpe Ratio

SR 5-30 100 0.509% 0.802% 0.254% 107.353% 1.250%

2. OP-PTS

SN-gh-0.75-0.05-200-1-100 0.964% 1.464% 0.471% 103.168% 2.258%

SN-gh-0.95-0.05-200-1-100 1.113% 1.741% 0.550% 105.503% 2.605%

SN-gh-0.00-0.05-200-1-200 1.198% 1.860% 0.577% 106.180% 2.759%

SN-gh-0.25-0.05-200-1-500 1.264% 2.007% 0.625% 106.470% 3.135%

3. Mixed Strategy - long

SN-gh-0.75-0.05-200-1-100 1.341% 1.891% 0.618% 99.875% 2.914%

SN-gh-0.95-0.05-200-1-100 1.272% 1.802% 0.579% 99.262% 2.796%

4. Mixed Strategy - long/short

SN-gh-0.00-0.05-200-1-200 1.292% 1.769% 0.568% 95.189% 2.810%

SN-gh-0.25-0.05-200-1-200 1.177% 1.614% 0.513% 94.506% 2.542%

SN-gh-0.00-0.05-200-1-500 1.436% 2.016% 0.631% 96.384% 3.136%

SN-gh-0.25-0.05-200-1-500 1.721% 2.420% 0.760% 97.631% 3.780%

SN-gh-0.75-0.05-200-1-1000 1.566% 2.272% 0.719% 100.122% 3.528%

SN-gh-0.95-0.05-200-1-1000 1.577% 2.317% 0.717% 100.349% 3.512%

REWARD-RISK RATIOS
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MIXED STRATEGY - EQUALLY WEIGHTED WITH 
LONG SHORT ADJUSTMENTS



1. Test strategies on a set of 10 Crypto Currencies.

2. Test strategies on Russell 3000.

3. Directly solve the optimisation problem with the correct number
of winners/losers.

• Define the optimal portfolio problem as a Mixed Integer
Programming (MIP) problem.

FUTURE TASKS



DALLAS OFFICE
Stephen T. Crosson
scrosson@jantzanalytics.com
(972) 725-7728

3811 Turtle Creek Blvd.
Suite 980
Dallas, Texas 75219

PLANO OFFICE
Jimmy H. Jackson
jjackson@jantzanalytics.com
972) 725-7724

1100 Mira Vista Blvd.
Suite 300
Plano, TX 75093

JantzAnalyt ics


